These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 28007841
1. A Network of Chromatin Factors Is Regulating the Transition to Postembryonic Development in Caenorhabditis elegans. Erdelyi P, Wang X, Suleski M, Wicky C. G3 (Bethesda); 2017 Feb 09; 7(2):343-353. PubMed ID: 28007841 [Abstract] [Full Text] [Related]
2. Maintenance of Genome Integrity by Mi2 Homologs CHD-3 and LET-418 in Caenorhabditis elegans. Turcotte CA, Sloat SA, Rigothi JA, Rosenkranse E, Northrup AL, Andrews NP, Checchi PM. Genetics; 2018 Mar 09; 208(3):991-1007. PubMed ID: 29339410 [Abstract] [Full Text] [Related]
3. The Caenorhabditis elegans LET-418/Mi2 plays a conserved role in lifespan regulation. De Vaux V, Pfefferli C, Passannante M, Belhaj K, von Essen A, Sprecher SG, Müller F, Wicky C. Aging Cell; 2013 Dec 09; 12(6):1012-20. PubMed ID: 23815345 [Abstract] [Full Text] [Related]
4. Multiple functions of PBRM-1/Polybromo- and LET-526/Osa-containing chromatin remodeling complexes in C. elegans development. Shibata Y, Uchida M, Takeshita H, Nishiwaki K, Sawa H. Dev Biol; 2012 Jan 15; 361(2):349-57. PubMed ID: 22119053 [Abstract] [Full Text] [Related]
5. Misexpression of the Caenorhabditis elegans miRNA let-7 is sufficient to drive developmental programs. Hayes GD, Ruvkun G. Cold Spring Harb Symp Quant Biol; 2006 Jan 15; 71():21-7. PubMed ID: 17381276 [Abstract] [Full Text] [Related]
6. C. elegans ISWI and NURF301 antagonize an Rb-like pathway in the determination of multiple cell fates. Andersen EC, Lu X, Horvitz HR. Development; 2006 Jul 15; 133(14):2695-704. PubMed ID: 16774993 [Abstract] [Full Text] [Related]
7. Functional Interplay of Two Paralogs Encoding SWI/SNF Chromatin-Remodeling Accessory Subunits During Caenorhabditis elegans Development. Ertl I, Porta-de-la-Riva M, Gómez-Orte E, Rubio-Peña K, Aristizábal-Corrales D, Cornes E, Fontrodona L, Osteikoetxea X, Ayuso C, Askjaer P, Cabello J, Cerón J. Genetics; 2016 Mar 15; 202(3):961-75. PubMed ID: 26739451 [Abstract] [Full Text] [Related]
8. A genetic interactome of the let-7 microRNA in C. elegans. Rausch M, Ecsedi M, Bartake H, Müllner A, Grosshans H. Dev Biol; 2015 May 15; 401(2):276-86. PubMed ID: 25732775 [Abstract] [Full Text] [Related]
9. XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans. Cardoso C, Couillault C, Mignon-Ravix C, Millet A, Ewbank JJ, Fontés M, Pujol N. Dev Biol; 2005 Feb 01; 278(1):49-59. PubMed ID: 15649460 [Abstract] [Full Text] [Related]
10. LET-418/Mi2 and SPR-5/LSD1 cooperatively prevent somatic reprogramming of C. elegans germline stem cells. Käser-Pébernard S, Müller F, Wicky C. Stem Cell Reports; 2014 Apr 08; 2(4):547-59. PubMed ID: 24749077 [Abstract] [Full Text] [Related]
11. SUMV-1 antagonizes the activity of synthetic multivulva genes in Caenorhabditis elegans. Yücel D, Hoe M, Llamosas E, Kant S, Jamieson C, Young PA, Crossley M, Nicholas HR. Dev Biol; 2014 Aug 15; 392(2):266-82. PubMed ID: 24882710 [Abstract] [Full Text] [Related]
12. Overlapping and non-overlapping roles of the class-I histone deacetylase-1 corepressors LET-418, SIN-3, and SPR-1 in Caenorhabditis elegans embryonic development. Kubota Y, Ohnishi Y, Hamasaki T, Yasui G, Ota N, Kitagawa H, Esaki A, Fahmi M, Ito M. Genes Genomics; 2021 May 15; 43(5):553-565. PubMed ID: 33740234 [Abstract] [Full Text] [Related]
13. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes. Wu X, Shi Z, Cui M, Han M, Ruvkun G. PLoS Genet; 2012 May 15; 8(3):e1002542. PubMed ID: 22412383 [Abstract] [Full Text] [Related]
14. Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans. Cui M, Kim EB, Han M. PLoS Genet; 2006 May 15; 2(5):e74. PubMed ID: 16710447 [Abstract] [Full Text] [Related]
15. MAB-10/NAB acts with LIN-29/EGR to regulate terminal differentiation and the transition from larva to adult in C. elegans. Harris DT, Horvitz HR. Development; 2011 Sep 15; 138(18):4051-62. PubMed ID: 21862562 [Abstract] [Full Text] [Related]
16. The C. elegans Mi-2 chromatin-remodelling proteins function in vulval cell fate determination. von Zelewsky T, Palladino F, Brunschwig K, Tobler H, Hajnal A, Müller F. Development; 2000 Dec 15; 127(24):5277-84. PubMed ID: 11076750 [Abstract] [Full Text] [Related]
17. A network of genes antagonistic to the LIN-35 retinoblastoma protein of Caenorhabditis elegans. Polley SR, Fay DS. Genetics; 2012 Aug 15; 191(4):1367-80. PubMed ID: 22542970 [Abstract] [Full Text] [Related]
18. Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference. Lehner B, Calixto A, Crombie C, Tischler J, Fortunato A, Chalfie M, Fraser AG. Genome Biol; 2006 Aug 15; 7(1):R4. PubMed ID: 16507136 [Abstract] [Full Text] [Related]
19. A Forward Genetic Screen for Suppressors of Somatic P Granules in Caenorhabditis elegans. Kelly AL, Senter-Zapata MJ, Campbell AC, Lust HE, Theriault ME, Andralojc KM, Updike DL. G3 (Bethesda); 2015 Jun 22; 5(10):2209-15. PubMed ID: 26100681 [Abstract] [Full Text] [Related]
20. Different Mi-2 complexes for various developmental functions in Caenorhabditis elegans. Passannante M, Marti CO, Pfefferli C, Moroni PS, Kaeser-Pebernard S, Puoti A, Hunziker P, Wicky C, Müller F. PLoS One; 2010 Oct 27; 5(10):e13681. PubMed ID: 21060680 [Abstract] [Full Text] [Related] Page: [Next] [New Search]