These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 28017814
1. New phenylpropanoid derivatives from the fruits of Xanthium sibiricum and their anti-inflammatory activity. Jiang H, Yang L, Ma GX, Xing XD, Yan ML, Zhang YY, Wang QH, Yang BY, Kuang HX, Xu XD. Fitoterapia; 2017 Mar; 117():11-15. PubMed ID: 28017814 [Abstract] [Full Text] [Related]
2. New phenylpropanoids from the fruits of Xanthium sibiricum and their anti-inflammatory activity. Xia Z, Xu TQ, Zhang HX, Chen YM, Zhou GX. Nat Prod Res; 2022 Feb; 36(3):805-813. PubMed ID: 32787575 [Abstract] [Full Text] [Related]
3. Methanol extracts of Xanthium sibiricum roots inhibit inflammatory responses via the inhibition of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) in murine macrophages. Ju A, Cho YC, Cho S. J Ethnopharmacol; 2015 Nov 04; 174():74-81. PubMed ID: 26232627 [Abstract] [Full Text] [Related]
4. Bioactive Sesquiterpenes and Lignans from the Fruits of Xanthium sibiricum. Shi YS, Liu YB, Ma SG, Li Y, Qu J, Li L, Yuan SP, Hou Q, Li YH, Jiang JD, Yu SS. J Nat Prod; 2015 Jul 24; 78(7):1526-35. PubMed ID: 26110443 [Abstract] [Full Text] [Related]
5. Neolignans from the fruits of Magnolia obovata and their inhibition effect on NO production in LPS-induced RAW 264.7 cells. Seo KH, Lee DY, Lee DS, Park JH, Jeong RH, Jung YJ, Shrestha S, Chung IS, Kim GS, Kim YC, Baek NI. Planta Med; 2013 Sep 24; 79(14):1335-40. PubMed ID: 23970426 [Abstract] [Full Text] [Related]
6. Two new monoterpene glucosides from Xanthium strumarium subsp. sibiricum with their anti-inflammatory activity. Jiang H, Xing X, Yan M, Guo X, Yang L, Yang L. Nat Prod Res; 2019 Dec 24; 33(23):3383-3388. PubMed ID: 29852790 [Abstract] [Full Text] [Related]
7. Phytochemical Research and Anti-Inflammatory Activities of the Ethanol Extract from Anoectochilus Roxburghii (Wall.) Lindl. Yao GX, Zhang J, Wu M, Yao ZR, Huang YP, Mu L, Wang L, Pan K, Yin ZQ, Song Z. Chem Biodivers; 2024 Sep 24; 21(9):e202401220. PubMed ID: 38869421 [Abstract] [Full Text] [Related]
8. Two new polyhydroxyl polyacetylenes from fruits of Herpetospermum caudigerum. Feng X, Zhong G, Dengba D, Luo J, Du S. J Nat Med; 2017 Jul 24; 71(3):574-577. PubMed ID: 28357635 [Abstract] [Full Text] [Related]
9. Phytochemical constituents of the pericarps of Illicium difengpi and their anti-inflammatory activity. Ning DS, Fu YX, Peng LY, Tang H, Li LC, Wu XD, Huang YS, Pan ZH. Nat Prod Res; 2020 Jun 24; 34(12):1756-1762. PubMed ID: 30580629 [Abstract] [Full Text] [Related]
10. Anti-inflammatory phenylpropanoids and phenolics from Ficus hirta Vahl. Cheng J, Yi X, Chen H, Wang Y, He X. Fitoterapia; 2017 Sep 24; 121():229-234. PubMed ID: 28782581 [Abstract] [Full Text] [Related]
11. A new naphthoquinone and other antibacterial constituents from the roots of Xanthium sibiricum. Chen WH, Liu WJ, Wang Y, Song XP, Chen GY. Nat Prod Res; 2015 Sep 24; 29(8):739-44. PubMed ID: 25482477 [Abstract] [Full Text] [Related]
12. Xanthii fructus inhibits inflammatory responses in LPS-stimulated RAW 264.7 macrophages through suppressing NF-κB and JNK/p38 MAPK. Yeom M, Kim JH, Min JH, Hwang MK, Jung HS, Sohn Y. J Ethnopharmacol; 2015 Dec 24; 176():394-401. PubMed ID: 26560439 [Abstract] [Full Text] [Related]
13. Inhibitory effects of β-chamigrenal, isolated from the fruits of Schisandra chinensis, on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in RAW 264.7 macrophages [corrected]. Shin JS, Ryu S, Cho YW, Kim HJ, Jang DS, Lee KT. Planta Med; 2014 Jun 24; 80(8-9):655-61. PubMed ID: 24871206 [Abstract] [Full Text] [Related]
14. Four new glycosides from the fruit of Xanthium sibiricum Patr. Jiang H, Yang L, Liu C, Hou H, Wang Q, Wang Z, Yang B, Kuang H. Molecules; 2013 Oct 10; 18(10):12464-73. PubMed ID: 24152669 [Abstract] [Full Text] [Related]
15. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria. Chiou SY, Ha CL, Wu PS, Yeh CL, Su YS, Li MP, Wu MJ. Int J Mol Sci; 2015 Dec 10; 16(12):29522-41. PubMed ID: 26690417 [Abstract] [Full Text] [Related]
16. Bioactive sulfur-containing compounds from Xanthium sibiricum, including a revision of the structure of xanthiazinone. Xia Z, Xu TQ, Zhang HX, Chen YM, Xu W, Zhou GX. Phytochemistry; 2020 May 10; 173():112293. PubMed ID: 32062197 [Abstract] [Full Text] [Related]
17. New phenylpropanoid and other compounds from Illicium lanceolatum with inhibitory activities against LPS-induced NO production in RAW 264.7 macrophages. Gui X, Wang G, Zhang N, Huang B. Fitoterapia; 2014 Jun 10; 95():51-7. PubMed ID: 24613803 [Abstract] [Full Text] [Related]
18. Anti-inflammatory steroids from the fruits of Artocarpus heterophyllus. Liu YY, Wang T, Yang RX, Tang HX, Qiang L, Liu YP. Nat Prod Res; 2021 Sep 10; 35(18):3071-3077. PubMed ID: 31755785 [Abstract] [Full Text] [Related]
19. Two new nimbolinin- and trichilin-class limonoids isolated from the fruits of Melia azedarach. Qiu L, Heng L, Xu R, Luo J, Li Y. Chin J Nat Med; 2019 Mar 10; 17(3):227-230. PubMed ID: 30910059 [Abstract] [Full Text] [Related]
20. Anti-inflammatory dimeric furanocoumarins from the roots of Angelica dahurica. Yang WQ, Song YL, Zhu ZX, Su C, Zhang X, Wang J, Shi SP, Tu PF. Fitoterapia; 2015 Sep 10; 105():187-93. PubMed ID: 26183116 [Abstract] [Full Text] [Related] Page: [Next] [New Search]