These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
234 related items for PubMed ID: 28019724
1. A comparison of methods to estimate anaerobic capacity: Accumulated oxygen deficit and W' during constant and all-out work-rate profiles. Muniz-Pumares D, Pedlar C, Godfrey R, Glaister M. J Sports Sci; 2017 Dec; 35(23):2357-2364. PubMed ID: 28019724 [Abstract] [Full Text] [Related]
2. Load Determination for the 3-Minute All-Out Exercise Test for Cycle Ergometry. Dicks ND, Jamnick NA, Murray SR, Pettitt RW. Int J Sports Physiol Perform; 2016 Mar; 11(2):197-203. PubMed ID: 26182439 [Abstract] [Full Text] [Related]
3. Self-pacing increases critical power and improves performance during severe-intensity exercise. Black MI, Jones AM, Bailey SJ, Vanhatalo A. Appl Physiol Nutr Metab; 2015 Jul; 40(7):662-70. PubMed ID: 26088158 [Abstract] [Full Text] [Related]
4. Effect of work and recovery durations on W' reconstitution during intermittent exercise. Skiba PF, Jackman S, Clarke D, Vanhatalo A, Jones AM. Med Sci Sports Exerc; 2014 Jul; 46(7):1433-40. PubMed ID: 24492634 [Abstract] [Full Text] [Related]
5. The constant work rate critical power protocol overestimates ramp incremental exercise performance. Black MI, Jones AM, Kelly JA, Bailey SJ, Vanhatalo A. Eur J Appl Physiol; 2016 Dec; 116(11-12):2415-2422. PubMed ID: 27787608 [Abstract] [Full Text] [Related]
6. Effects of pacing strategy on work done above critical power during high-intensity exercise. Chidnok W, Dimenna FJ, Bailey SJ, Wilkerson DP, Vanhatalo A, Jones AM. Med Sci Sports Exerc; 2013 Jul; 45(7):1377-85. PubMed ID: 23377832 [Abstract] [Full Text] [Related]
7. Exercise Tolerance Can Be Enhanced through a Change in Work Rate within the Severe Intensity Domain: Work above Critical Power Is Not Constant. Dekerle J, de Souza KM, de Lucas RD, Guglielmo LG, Greco CC, Denadai BS. PLoS One; 2015 Jul; 10(9):e0138428. PubMed ID: 26407169 [Abstract] [Full Text] [Related]
8. Methodological Approaches and Related Challenges Associated With the Determination of Critical Power and Curvature Constant. Muniz-Pumares D, Karsten B, Triska C, Glaister M. J Strength Cond Res; 2019 Feb; 33(2):584-596. PubMed ID: 30531413 [Abstract] [Full Text] [Related]
9. Accounting for Dynamic Changes in the Power-Duration Relationship Improves the Accuracy of W' Balance Modeling. Black MI, Skiba PF, Wylie LJ, Lewis J, Jones AM, Vanhatalo A. Med Sci Sports Exerc; 2023 Feb 01; 55(2):235-244. PubMed ID: 36094337 [Abstract] [Full Text] [Related]
10. Comparison between maximal power in the power-endurance relationship and maximal instantaneous power. Chatagnon M, Pouilly JP, Thomas V, Busso T. Eur J Appl Physiol; 2005 Aug 01; 94(5-6):711-7. PubMed ID: 15959801 [Abstract] [Full Text] [Related]
11. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities. Schäfer LU, Hayes M, Dekerle J. Exp Physiol; 2019 Feb 01; 104(2):209-219. PubMed ID: 30468691 [Abstract] [Full Text] [Related]
12. Time Trials Versus Time-to-Exhaustion Tests: Effects on Critical Power, W', and Oxygen-Uptake Kinetics. Karsten B, Baker J, Naclerio F, Klose A, Bianco A, Nimmerichter A. Int J Sports Physiol Perform; 2018 Feb 01; 13(2):183-188. PubMed ID: 28530476 [Abstract] [Full Text] [Related]
13. Accumulated Oxygen Deficit During Exercise to Exhaustion Determined at Different Supramaximal Work Rates. Muniz-Pumares D, Pedlar C, Godfrey RJ, Glaister M. Int J Sports Physiol Perform; 2017 Mar 01; 12(3):351-356. PubMed ID: 27295720 [Abstract] [Full Text] [Related]
14. Validity of the two-parameter model in estimating the anaerobic work capacity. Dekerle J, Brickley G, Hammond AJ, Pringle JS, Carter H. Eur J Appl Physiol; 2006 Feb 01; 96(3):257-64. PubMed ID: 16261386 [Abstract] [Full Text] [Related]
15. Relationship between anaerobic parameters provided from MAOD and critical power model in specific table tennis test. Zagatto AM, Gobatto CA. Int J Sports Med; 2012 Aug 01; 33(8):613-20. PubMed ID: 22562729 [Abstract] [Full Text] [Related]
16. Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans. Miura A, Endo M, Sato H, Sato H, Barstow TJ, Fukuba Y. Eur J Appl Physiol; 2002 Jul 01; 87(3):238-44. PubMed ID: 12111284 [Abstract] [Full Text] [Related]
17. Changes in the power-duration relationship following prolonged exercise: estimation using conventional and all-out protocols and relationship with muscle glycogen. Clark IE, Vanhatalo A, Thompson C, Wylie LJ, Bailey SJ, Kirby BS, Wilkins BW, Jones AM. Am J Physiol Regul Integr Comp Physiol; 2019 Jul 01; 317(1):R59-R67. PubMed ID: 30995104 [Abstract] [Full Text] [Related]
18. Validity of the 3-Minute All-Out Exercise Test on the CompuTrainer. Clark IE, Gartner HE, Williams JL, Pettitt RW. J Strength Cond Res; 2016 Mar 01; 30(3):825-9. PubMed ID: 26340469 [Abstract] [Full Text] [Related]
19. The curvature constant parameter of the power-duration curve for varied-power exercise. Fukuba Y, Miura A, Endo M, Kan A, Yanagawa K, Whipp BJ. Med Sci Sports Exerc; 2003 Aug 01; 35(8):1413-8. PubMed ID: 12900698 [Abstract] [Full Text] [Related]
20. Effects of Two Hours of Heavy-Intensity Exercise on the Power-Duration Relationship. Clark IE, Vanhatalo A, Bailey SJ, Wylie LJ, Kirby BS, Wilkins BW, Jones AM. Med Sci Sports Exerc; 2018 Aug 01; 50(8):1658-1668. PubMed ID: 29521722 [Abstract] [Full Text] [Related] Page: [Next] [New Search]