These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
187 related items for PubMed ID: 28024538
1. Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods. Caliari ÍP, Barbosa MH, Ferreira SO, Teófilo RF. Carbohydr Polym; 2017 Feb 20; 158():20-28. PubMed ID: 28024538 [Abstract] [Full Text] [Related]
2. Prediction of Lignin Content in Different Parts of Sugarcane Using Near-Infrared Spectroscopy (NIR), Ordered Predictors Selection (OPS), and Partial Least Squares (PLS). Assis C, Ramos RS, Silva LA, Kist V, Barbosa MHP, Teófilo RF. Appl Spectrosc; 2017 Aug 20; 71(8):2001-2012. PubMed ID: 28452227 [Abstract] [Full Text] [Related]
3. [Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy]. Jiang ZH, Fei BH, Yang Z. Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar 20; 27(3):435-8. PubMed ID: 17554892 [Abstract] [Full Text] [Related]
4. Near-infrared spectroscopy for the prediction of disease ratings for Fiji leaf gall in sugarcane clones. Purcell DE, O'Shea MG, Johnson RA, Kokot S. Appl Spectrosc; 2009 Apr 20; 63(4):450-7. PubMed ID: 19366512 [Abstract] [Full Text] [Related]
5. [Determination of crystallinity in Neosinocalamus affinins based on near infrared spectroscopy and PLS methods]. Sun BL, Liu JL, Cai YB. Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb 20; 31(2):366-70. PubMed ID: 21510382 [Abstract] [Full Text] [Related]
6. Comparison of autohydrolysis and ionic liquid 1-butyl-3-methylimidazolium acetate pretreatment to enhance enzymatic hydrolysis of sugarcane bagasse. Hashmi M, Sun Q, Tao J, Wells T, Shah AA, Labbé N, Ragauskas AJ. Bioresour Technol; 2017 Jan 20; 224():714-720. PubMed ID: 27864135 [Abstract] [Full Text] [Related]
7. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy. Li X, Sun C, Zhou B, He Y. Sci Rep; 2015 Nov 25; 5():17210. PubMed ID: 26601657 [Abstract] [Full Text] [Related]
8. [Prediction of Cellulose, Hemicellulose, Lignin and Ash Content of Four Miscanthus Bio-Energy Crops Using Near-Infrared Spectroscopy]. Li XN, Fan XF, Wu JY, Zhang GF, Liu SY, Wu MJ, Cheng YB, Zhang N. Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan 25; 36(1):64-9. PubMed ID: 27228742 [Abstract] [Full Text] [Related]
9. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. Agarwal UP, Reiner RR, Ralph SA. J Agric Food Chem; 2013 Jan 09; 61(1):103-13. PubMed ID: 23241140 [Abstract] [Full Text] [Related]
10. Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. Sindhu R, Binod P, Satyanagalakshmi K, Janu KU, Sajna KV, Kurien N, Sukumaran RK, Pandey A. Appl Biochem Biotechnol; 2010 Dec 09; 162(8):2313-23. PubMed ID: 20526821 [Abstract] [Full Text] [Related]
11. Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis. Jin X, Chen X, Shi C, Li M, Guan Y, Yu CY, Yamada T, Sacks EJ, Peng J. Bioresour Technol; 2017 Oct 09; 241():603-609. PubMed ID: 28601778 [Abstract] [Full Text] [Related]
12. Advancing energy cane cell wall digestibility screening by near-infrared spectroscopy. Chong BF, O'Shea MG. Appl Spectrosc; 2013 Oct 09; 67(10):1160-4. PubMed ID: 24067572 [Abstract] [Full Text] [Related]
13. Crystallinity evaluation of tacrolimus solid dispersions by chemometric analysis. Zidan AS, Rahman Z, Sayeed V, Raw A, Yu L, Khan MA. Int J Pharm; 2012 Feb 28; 423(2):341-50. PubMed ID: 22100517 [Abstract] [Full Text] [Related]
14. A comparative study for the organic byproducts from hydrothermal carbonizations of sugarcane bagasse and its bio-refined components cellulose and lignin. Du FL, Du QS, Dai J, Tang PD, Li YM, Long SY, Xie NZ, Wang QY, Huang RB. PLoS One; 2018 Feb 28; 13(6):e0197188. PubMed ID: 29856735 [Abstract] [Full Text] [Related]
15. Early prediction of sugarcane genotypes susceptible and resistant to Diatraea saccharalis using spectroscopies and classification techniques. Porto NA, Roque JV, Wartha CA, Cardoso W, Peternelli LA, Barbosa MHP, Teófilo RF. Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jul 05; 218():69-75. PubMed ID: 30954799 [Abstract] [Full Text] [Related]
16. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse. Zhang H, Wu S. Bioresour Technol; 2014 Apr 05; 158():161-5. PubMed ID: 24603488 [Abstract] [Full Text] [Related]
17. Compositional changes in sugarcane bagasse on low temperature, long-term diluted ammonia treatment. Kim M, Aita G, Day DF. Appl Biochem Biotechnol; 2010 May 05; 161(1-8):34-40. PubMed ID: 19916000 [Abstract] [Full Text] [Related]
18. Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse. Vanitjinda G, Nimchua T, Sukyai P. Int J Biol Macromol; 2019 Feb 01; 122():503-516. PubMed ID: 30385339 [Abstract] [Full Text] [Related]
19. Determination of the crystallinity of cephalexin in pharmaceutical formulations by chemometrical near-infrared spectroscopy. Fukui Y, Otsuka M. Drug Dev Ind Pharm; 2010 Jan 01; 36(1):72-80. PubMed ID: 19656006 [Abstract] [Full Text] [Related]
20. Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Qiu Z, Aita GM, Walker MS. Bioresour Technol; 2012 Aug 01; 117():251-6. PubMed ID: 22617034 [Abstract] [Full Text] [Related] Page: [Next] [New Search]