These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
369 related items for PubMed ID: 28029548
1. Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy. Ferreira DC, Monteiro CS, Chaves CR, Sáfar GAM, Moreira RL, Pinheiro MVB, Martins DCS, Ladeira LO, Krambrock K. Colloids Surf B Biointerfaces; 2017 Feb 01; 150():297-307. PubMed ID: 28029548 [Abstract] [Full Text] [Related]
2. Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy. Penon O, Marín MJ, Russell DA, Pérez-García L. J Colloid Interface Sci; 2017 Jun 15; 496():100-110. PubMed ID: 28214620 [Abstract] [Full Text] [Related]
3. Amphiphilic gemini pyridinium-mediated incorporation of Zn(II)meso-tetrakis(4-carboxyphenyl)porphyrin into water-soluble gold nanoparticles for photodynamic therapy. Alea-Reyes ME, Soriano J, Mora-Espí I, Rodrigues M, Russell DA, Barrios L, Pérez-García L. Colloids Surf B Biointerfaces; 2017 Oct 01; 158():602-609. PubMed ID: 28755557 [Abstract] [Full Text] [Related]
4. Laser beam controlled drug release from Ce6-gold nanorod composites in living cells: a FLIM study. Xu Y, He R, Lin D, Ji M, Chen J. Nanoscale; 2015 Feb 14; 7(6):2433-41. PubMed ID: 25565649 [Abstract] [Full Text] [Related]
5. Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy. Li S, Shen X, Xu QH, Cao Y. Nanoscale; 2019 Nov 07; 11(41):19551-19560. PubMed ID: 31578535 [Abstract] [Full Text] [Related]
6. Zinc phthalocyanines attached to gold nanorods for simultaneous hyperthermic and photodynamic therapies against melanoma in vitro. Freitas LF, Hamblin MR, Anzengruber F, Perussi JR, Ribeiro AO, Martins VCA, Plepis AMG. J Photochem Photobiol B; 2017 Aug 07; 173():181-186. PubMed ID: 28595072 [Abstract] [Full Text] [Related]
7. Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy. Yang Y, Hu Y, Du H, Ren L, Wang H. Int J Nanomedicine; 2018 Aug 07; 13():2065-2078. PubMed ID: 29670350 [Abstract] [Full Text] [Related]
9. Third-Generation Anticancer Photodynamic Therapy Systems Based on Star-like Anionic Polyacrylamide Polymer, Gold Nanoparticles, and Temoporfin Photosensitizer. Yeshchenko O, Khort P, Fedotov O, Chumachenko V, Virych P, Warren HS, Booth BW, Bliznyuk V, Kutsevol N. Molecules; 2024 May 09; 29(10):. PubMed ID: 38792086 [Abstract] [Full Text] [Related]
10. The conjugates of gold nanorods and chlorin e6 for enhancing the fluorescence detection and photodynamic therapy of cancers. Huang X, Tian XJ, Yang WL, Ehrenberg B, Chen JY. Phys Chem Chem Phys; 2013 Oct 14; 15(38):15727-33. PubMed ID: 23575880 [Abstract] [Full Text] [Related]
11. Quinones as photosensitizer for photodynamic therapy: ROS generation, mechanism and detection methods. Rajendran M. Photodiagnosis Photodyn Ther; 2016 Mar 14; 13():175-187. PubMed ID: 26241780 [Abstract] [Full Text] [Related]
12. Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. Nombona N, Maduray K, Antunes E, Karsten A, Nyokong T. J Photochem Photobiol B; 2012 Feb 06; 107():35-44. PubMed ID: 22209036 [Abstract] [Full Text] [Related]
13. Gold nanorod-photosensitizer complex obtained by layer-by-layer method for photodynamic/photothermal therapy in vitro. Kim SB, Lee TH, Yoon I, Shim YK, Lee WK. Chem Asian J; 2015 Mar 06; 10(3):563-7. PubMed ID: 25630881 [Abstract] [Full Text] [Related]
14. Fluorescence guided photothermal/photodynamic ablation of tumours using pH-responsive chlorin e6-conjugated gold nanorods. Zhang C, Cheng X, Chen M, Sheng J, Ren J, Jiang Z, Cai J, Hu Y. Colloids Surf B Biointerfaces; 2017 Dec 01; 160():345-354. PubMed ID: 28961542 [Abstract] [Full Text] [Related]
15. (Metallo)porphyrins as potent phototoxic anti-cancer agents after irradiation with red light. Antoni PM, Naik A, Albert I, Rubbiani R, Gupta S, Ruiz-Sanchez P, Munikorn P, Mateos JM, Luginbuehl V, Thamyongkit P, Ziegler U, Gasser G, Jeschke G, Spingler B. Chemistry; 2015 Jan 12; 21(3):1179-83. PubMed ID: 25421757 [Abstract] [Full Text] [Related]
16. Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy. Zhao T, Yu K, Li L, Zhang T, Guan Z, Gao N, Yuan P, Li S, Yao SQ, Xu QH, Xu GQ. ACS Appl Mater Interfaces; 2014 Feb 26; 6(4):2700-8. PubMed ID: 24483257 [Abstract] [Full Text] [Related]
17. Detection of singlet oxygen by EPR: The instability of the nitroxyl radicals. Victória HFV, Ferreira DC, Filho JBG, Martins DCS, Pinheiro MVB, Sáfar GAM, Krambrock K. Free Radic Biol Med; 2022 Feb 20; 180():143-152. PubMed ID: 34979255 [Abstract] [Full Text] [Related]
18. Enhanced Cellular Uptake and Photodynamic Effect with Amphiphilic Fluorinated Porphyrins: The Role of Sulfoester Groups and the Nature of Reactive Oxygen Species. Pucelik B, Sułek A, Drozd A, Stochel G, Pereira MM, Pinto SMA, Arnaut LG, Dąbrowski JM. Int J Mol Sci; 2020 Apr 16; 21(8):. PubMed ID: 32316355 [Abstract] [Full Text] [Related]
19. Efficient Singlet Oxygen Generation in Metal Nanoclusters for Two-Photon Photodynamic Therapy Applications. Ho-Wu R, Yau SH, Goodson T. J Phys Chem B; 2017 Nov 02; 121(43):10073-10080. PubMed ID: 29016137 [Abstract] [Full Text] [Related]
20. Organic small molecular nanoparticles based on self-assembly of amphiphilic fluoroporphyrins for photodynamic and photothermal synergistic cancer therapy. Yang L, Li H, Liu D, Su H, Wang K, Liu G, Luo X, Wu F. Colloids Surf B Biointerfaces; 2019 Oct 01; 182():110345. PubMed ID: 31299540 [Abstract] [Full Text] [Related] Page: [Next] [New Search]