These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Decreases in bone mineral density at cortical and trabecular sites in the tibia and femur during the first year of spinal cord injury. Coupaud S, McLean AN, Purcell M, Fraser MH, Allan DB. Bone; 2015 May; 74():69-75. PubMed ID: 25596521 [Abstract] [Full Text] [Related]
3. Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Eser P, Frotzler A, Zehnder Y, Denoth J. Arch Phys Med Rehabil; 2005 Mar; 86(3):498-504. PubMed ID: 15759235 [Abstract] [Full Text] [Related]
4. Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT). Frotzler A, Berger M, Knecht H, Eser P. Bone; 2008 Sep; 43(3):549-55. PubMed ID: 18567554 [Abstract] [Full Text] [Related]
5. Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Frey-Rindova P, de Bruin ED, Stüssi E, Dambacher MA, Dietz V. Spinal Cord; 2000 Jan; 38(1):26-32. PubMed ID: 10762194 [Abstract] [Full Text] [Related]
6. Meagre effects of disuse on the human fibula are not explained by bone size or geometry. Ireland A, Capozza RF, Cointry GR, Nocciolino L, Ferretti JL, Rittweger J. Osteoporos Int; 2017 Feb; 28(2):633-641. PubMed ID: 27734100 [Abstract] [Full Text] [Related]
7. Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, Schiessl H. Bone; 2004 May; 34(5):869-80. PubMed ID: 15121019 [Abstract] [Full Text] [Related]
8. Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time. Haider IT, Lobos SM, Simonian N, Schnitzer TJ, Edwards WB. Osteoporos Int; 2018 Dec; 29(12):2703-2715. PubMed ID: 30334093 [Abstract] [Full Text] [Related]
9. Regional cortical and trabecular bone loss after spinal cord injury. Dudley-Javoroski S, Shields RK. J Rehabil Res Dev; 2012 Dec; 49(9):1365-76. PubMed ID: 23408218 [Abstract] [Full Text] [Related]
10. Prediction of risk of fracture in the tibia due to altered bone mineral density distribution resulting from disuse: a finite element study. Gislason MK, Coupaud S, Sasagawa K, Tanabe Y, Purcell M, Allan DB, Tanner KE. Proc Inst Mech Eng H; 2014 Feb; 228(2):165-74. PubMed ID: 24503510 [Abstract] [Full Text] [Related]
11. Muscle Density and Bone Quality of the Distal Lower Extremity Among Individuals with Chronic Spinal Cord Injury. Gibbs JC, Craven BC, Moore C, Thabane L, Adachi JD, Giangregorio LM. Top Spinal Cord Inj Rehabil; 2015 Feb; 21(4):282-93. PubMed ID: 26689693 [Abstract] [Full Text] [Related]
12. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Zehnder Y, Lüthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zäch G, Lippuner K. Osteoporos Int; 2004 Mar; 15(3):180-9. PubMed ID: 14722626 [Abstract] [Full Text] [Related]
13. Trabecular Bone Score at the Distal Femur and Proximal Tibia in Individuals With Spinal Cord Injury. Lobos S, Cooke A, Simonett G, Ho C, Boyd SK, Edwards WB. J Clin Densitom; 2019 Mar; 22(2):249-256. PubMed ID: 29776736 [Abstract] [Full Text] [Related]
14. Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury. Edwards WB, Schnitzer TJ, Troy KL. Osteoporos Int; 2014 Mar; 25(3):1005-15. PubMed ID: 24190426 [Abstract] [Full Text] [Related]
15. Bone loss and mechanical properties of tibia in spinal cord injured men. Dionyssiotis Y, Trovas G, Galanos A, Raptou P, Papaioannou N, Papagelopoulos P, Petropoulou K, Lyritis GP. J Musculoskelet Neuronal Interact; 2007 Mar; 7(1):62-8. PubMed ID: 17396008 [Abstract] [Full Text] [Related]
16. Bone morphology of the femur and tibia captured by statistical shape modelling predicts rapid bone loss in acute spinal cord injury patients. Varzi D, Coupaud SAF, Purcell M, Allan DB, Gregory JS, Barr RJ. Bone; 2015 Dec; 81():495-501. PubMed ID: 26341577 [Abstract] [Full Text] [Related]
17. Bone Mineral Loss at the Distal Femur and Proximal Tibia Following Spinal Cord Injury in Men and Women. Mazur CM, Edwards WB, Haider IT, Fang Y, Morse LR, Schnitzer TJ, Simonian N, Troy KL. J Clin Densitom; 2023 Dec; 26(3):101380. PubMed ID: 37201436 [Abstract] [Full Text] [Related]
18. Exploring the determinants of fracture risk among individuals with spinal cord injury. Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, Giangregorio LM. Osteoporos Int; 2014 Jan; 25(1):177-85. PubMed ID: 23812595 [Abstract] [Full Text] [Related]
19. Changes in the structural and material properties of the tibia in patients with spinal cord injury. McCarthy ID, Bloomer Z, Gall A, Keen R, Ferguson-Pell M. Spinal Cord; 2012 Apr; 50(4):333-7. PubMed ID: 22124349 [Abstract] [Full Text] [Related]
20. Peripheral quantitative computed tomography: measurement sensitivity in persons with and without spinal cord injury. Shields RK, Dudley-Javoroski S, Boaldin KM, Corey TA, Fog DB, Ruen JM. Arch Phys Med Rehabil; 2006 Oct; 87(10):1376-81. PubMed ID: 17023249 [Abstract] [Full Text] [Related] Page: [Next] [New Search]