These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


836 related items for PubMed ID: 28035841

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study.
    Fluet GG, Patel J, Qiu Q, Yarossi M, Massood S, Adamovich SV, Tunik E, Merians AS.
    Disabil Rehabil; 2017 Jul; 39(15):1524-1531. PubMed ID: 27669997
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Feasibility and preliminary efficacy of a combined virtual reality, robotics and electrical stimulation intervention in upper extremity stroke rehabilitation.
    Norouzi-Gheidari N, Archambault PS, Monte-Silva K, Kairy D, Sveistrup H, Trivino M, Levin MF, Milot MH.
    J Neuroeng Rehabil; 2021 Apr 14; 18(1):61. PubMed ID: 33853614
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review.
    Molteni F, Gasperini G, Cannaviello G, Guanziroli E.
    PM R; 2018 Sep 14; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804
    [Abstract] [Full Text] [Related]

  • 9. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation.
    Masiero S, Armani M, Ferlini G, Rosati G, Rossi A.
    Neurorehabil Neural Repair; 2014 May 14; 28(4):377-86. PubMed ID: 24316679
    [Abstract] [Full Text] [Related]

  • 10. Application of the extended technology acceptance model to explore clinician likelihood to use robotics in rehabilitation.
    Klaic M, Fong J, Crocher V, Davies K, Brock K, Sutton E, Oetomo D, Tan Y, Galea MP.
    Disabil Rehabil Assist Technol; 2024 Jan 14; 19(1):52-59. PubMed ID: 35400278
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Robotic and Sensor Technology for Upper Limb Rehabilitation.
    Jakob I, Kollreider A, Germanotta M, Benetti F, Cruciani A, Padua L, Aprile I.
    PM R; 2018 Sep 14; 10(9 Suppl 2):S189-S197. PubMed ID: 30269805
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Bilateral robotic priming before task-oriented approach in subacute stroke rehabilitation: a pilot randomized controlled trial.
    Hsieh YW, Wu CY, Wang WE, Lin KC, Chang KC, Chen CC, Liu CT.
    Clin Rehabil; 2017 Feb 14; 31(2):225-233. PubMed ID: 26893457
    [Abstract] [Full Text] [Related]

  • 19. The effects of error-augmentation versus error-reduction paradigms in robotic therapy to enhance upper extremity performance and recovery post-stroke: a systematic review.
    Liu LY, Li Y, Lamontagne A.
    J Neuroeng Rehabil; 2018 Jul 04; 15(1):65. PubMed ID: 29973250
    [Abstract] [Full Text] [Related]

  • 20. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: a systematic review.
    Khalid S, Alnajjar F, Gochoo M, Renawi A, Shimoda S.
    Disabil Rehabil Assist Technol; 2023 Jul 04; 18(5):658-672. PubMed ID: 33861684
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 42.