These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
836 related items for PubMed ID: 28035841
21. Rehabilitation robotics. Munih M, Bajd T. Technol Health Care; 2011; 19(6):483-95. PubMed ID: 22129949 [Abstract] [Full Text] [Related]
22. Haptic Neurorehabilitation and Virtual Reality for Upper Limb Paralysis: A Review. Piggott L, Wagner S, Ziat M. Crit Rev Biomed Eng; 2016; 44(1-2):1-32. PubMed ID: 27652449 [Abstract] [Full Text] [Related]
23. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring DE, Wanberg J, Balasubramanian S, Swenson P, Ward JA. IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266 [Abstract] [Full Text] [Related]
24. [Contributions of robotic devices to upper limb poststroke rehabilitation]. Duret C. Rev Neurol (Paris); 2010 May; 166(5):486-93. PubMed ID: 19942243 [Abstract] [Full Text] [Related]
25. Combining Dopaminergic Facilitation with Robot-Assisted Upper Limb Therapy in Stroke Survivors: A Focused Review. Tran DA, Pajaro-Blazquez M, Daneault JF, Gallegos JG, Pons J, Fregni F, Bonato P, Zafonte R. Am J Phys Med Rehabil; 2016 Jun; 95(6):459-74. PubMed ID: 26829074 [Abstract] [Full Text] [Related]
26. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Hesse S, Schmidt H, Werner C, Bardeleben A. Curr Opin Neurol; 2003 Dec; 16(6):705-10. PubMed ID: 14624080 [Abstract] [Full Text] [Related]
27. Mobile game-based virtual reality rehabilitation program for upper limb dysfunction after ischemic stroke. Choi YH, Ku J, Lim H, Kim YH, Paik NJ. Restor Neurol Neurosci; 2016 May 02; 34(3):455-63. PubMed ID: 27163250 [Abstract] [Full Text] [Related]
28. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges. Mazzoleni S, Duret C, Grosmaire AG, Battini E. Biomed Res Int; 2017 May 02; 2017():8905637. PubMed ID: 29057269 [Abstract] [Full Text] [Related]
29. Robots integrated with virtual reality simulations for customized motor training in a person with upper extremity hemiparesis: a case study. Fluet GG, Merians AS, Qiu Q, Lafond I, Saleh S, Ruano V, Delmonico AR, Adamovich SV. J Neurol Phys Ther; 2012 Jun 02; 36(2):79-86. PubMed ID: 22592063 [Abstract] [Full Text] [Related]
30. Innovative technologies applied to sensorimotor rehabilitation after stroke. Laffont I, Bakhti K, Coroian F, van Dokkum L, Mottet D, Schweighofer N, Froger J. Ann Phys Rehabil Med; 2014 Nov 02; 57(8):543-551. PubMed ID: 25261273 [Abstract] [Full Text] [Related]
31. Innovative approaches to the rehabilitation of upper extremity hemiparesis using virtual environments. Merians AS, Tunik E, Fluet GG, Qiu Q, Adamovich SV. Eur J Phys Rehabil Med; 2009 Mar 02; 45(1):123-33. PubMed ID: 19158659 [Abstract] [Full Text] [Related]
32. Giving Them a Hand: Wearing a Myoelectric Elbow-Wrist-Hand Orthosis Reduces Upper Extremity Impairment in Chronic Stroke. Peters HT, Page SJ, Persch A. Arch Phys Med Rehabil; 2017 Sep 02; 98(9):1821-1827. PubMed ID: 28130084 [Abstract] [Full Text] [Related]
33. Robotic training and clinical assessment of upper extremity movements after spinal cord injury: a single case report. Yozbatiran N, Berliner J, O'Malley MK, Pehlivan AU, Kadivar Z, Boake C, Francisco GE. J Rehabil Med; 2012 Feb 02; 44(2):186-8. PubMed ID: 22334347 [Abstract] [Full Text] [Related]
35. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities. Li C, Rusák Z, Horváth I, Ji L. Int J Rehabil Res; 2014 Dec 02; 37(4):334-42. PubMed ID: 25221845 [Abstract] [Full Text] [Related]
36. Effects of combined robotic therapy and repetitive-task practice on upper-extremity function in a patient with chronic stroke. Rosenstein L, Ridgel AL, Thota A, Samame B, Alberts JL. Am J Occup Ther; 2008 Dec 02; 62(1):28-35. PubMed ID: 18254428 [Abstract] [Full Text] [Related]
37. Effectiveness and Superiority of Rehabilitative Treatments in Enhancing Motor Recovery Within 6 Months Poststroke: A Systemic Review. Lin IH, Tsai HT, Wang CY, Hsu CY, Liou TH, Lin YN. Arch Phys Med Rehabil; 2019 Feb 02; 100(2):366-378. PubMed ID: 30686327 [Abstract] [Full Text] [Related]
38. Three upper limb robotic devices for stroke rehabilitation: a review and clinical perspective. Bishop L, Stein J. NeuroRehabilitation; 2013 Feb 02; 33(1):3-11. PubMed ID: 23949043 [Abstract] [Full Text] [Related]
39. Task-oriented rehabilitation robotics. Schweighofer N, Choi Y, Winstein C, Gordon J. Am J Phys Med Rehabil; 2012 Nov 02; 91(11 Suppl 3):S270-9. PubMed ID: 23080042 [Abstract] [Full Text] [Related]
40. Neuroplasticity-Based Technologies and Interventions for Restoring Motor Functions in Multiple Sclerosis. Straudi S, Basaglia N. Adv Exp Med Biol; 2017 Nov 02; 958():171-185. PubMed ID: 28093714 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]