These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


453 related items for PubMed ID: 28049415

  • 1. Improving protein complex prediction by reconstructing a high-confidence protein-protein interaction network of Escherichia coli from different physical interaction data sources.
    Taghipour S, Zarrineh P, Ganjtabesh M, Nowzari-Dalini A.
    BMC Bioinformatics; 2017 Jan 03; 18(1):10. PubMed ID: 28049415
    [Abstract] [Full Text] [Related]

  • 2. Identification of protein complexes and functional modules in E. coli PPI networks.
    Kong P, Huang G, Liu W.
    BMC Microbiol; 2020 Aug 06; 20(1):243. PubMed ID: 32762711
    [Abstract] [Full Text] [Related]

  • 3. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C, Theofilatos K, Pegkas A, Likothanassis S, Mavroudi S.
    Artif Intell Med; 2016 Jul 06; 71():62-9. PubMed ID: 27506132
    [Abstract] [Full Text] [Related]

  • 4. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 06; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 5. Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data.
    Li M, Wu X, Wang J, Pan Y.
    BMC Bioinformatics; 2012 May 23; 13():109. PubMed ID: 22621308
    [Abstract] [Full Text] [Related]

  • 6. Detecting Functional Modules Based on a Multiple-Grain Model in Large-Scale Protein-Protein Interaction Networks.
    Ji J, Lv J, Yang C, Zhang A.
    IEEE/ACM Trans Comput Biol Bioinform; 2016 May 23; 13(4):610-22. PubMed ID: 26394434
    [Abstract] [Full Text] [Related]

  • 7. Identification of protein complexes from multi-relationship protein interaction networks.
    Li X, Wang J, Zhao B, Wu FX, Pan Y.
    Hum Genomics; 2016 Jul 25; 10 Suppl 2(Suppl 2):17. PubMed ID: 27461193
    [Abstract] [Full Text] [Related]

  • 8. Integrating experimental and literature protein-protein interaction data for protein complex prediction.
    Zhang Y, Lin H, Yang Z, Wang J.
    BMC Genomics; 2015 Jul 25; 16 Suppl 2(Suppl 2):S4. PubMed ID: 25708571
    [Abstract] [Full Text] [Related]

  • 9. Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping.
    Lo YS, Huang SH, Luo YC, Lin CY, Yang JM.
    PLoS One; 2015 Jul 25; 10(1):e0116347. PubMed ID: 25602759
    [Abstract] [Full Text] [Related]

  • 10. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L, Yan H, Zhang XF.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):463. PubMed ID: 29219066
    [Abstract] [Full Text] [Related]

  • 11. PROPER: global protein interaction network alignment through percolation matching.
    Kazemi E, Hassani H, Grossglauser M, Pezeshgi Modarres H.
    BMC Bioinformatics; 2016 Dec 12; 17(1):527. PubMed ID: 27955623
    [Abstract] [Full Text] [Related]

  • 12. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks.
    Chen B, Fan W, Liu J, Wu FX.
    Brief Bioinform; 2014 Mar 12; 15(2):177-94. PubMed ID: 23780996
    [Abstract] [Full Text] [Related]

  • 13. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.
    Cao B, Luo J, Liang C, Wang S, Song D.
    Comput Biol Chem; 2015 Oct 12; 58():173-81. PubMed ID: 26298638
    [Abstract] [Full Text] [Related]

  • 14. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N, Yoon BJ.
    BMC Bioinformatics; 2016 Oct 06; 17(Suppl 13):351. PubMed ID: 27766944
    [Abstract] [Full Text] [Related]

  • 15. Constructing a robust protein-protein interaction network by integrating multiple public databases.
    Martha VS, Liu Z, Guo L, Su Z, Ye Y, Fang H, Ding D, Tong W, Xu X.
    BMC Bioinformatics; 2011 Oct 18; 12 Suppl 10(Suppl 10):S7. PubMed ID: 22165958
    [Abstract] [Full Text] [Related]

  • 16. Protein complex detection via weighted ensemble clustering based on Bayesian nonnegative matrix factorization.
    Ou-Yang L, Dai DQ, Zhang XF.
    PLoS One; 2013 Oct 18; 8(5):e62158. PubMed ID: 23658709
    [Abstract] [Full Text] [Related]

  • 17. A hub-attachment based method to detect functional modules from confidence-scored protein interactions and expression profiles.
    Chin CH, Chen SH, Ho CW, Ko MT, Lin CY.
    BMC Bioinformatics; 2010 Jan 18; 11 Suppl 1(Suppl 1):S25. PubMed ID: 20122197
    [Abstract] [Full Text] [Related]

  • 18. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model.
    Jeong H, Qian X, Yoon BJ.
    BMC Bioinformatics; 2016 Oct 06; 17(Suppl 13):395. PubMed ID: 27766938
    [Abstract] [Full Text] [Related]

  • 19. Clustering algorithms for detecting functional modules in protein interaction networks.
    Gao L, Sun PG, Song J.
    J Bioinform Comput Biol; 2009 Feb 06; 7(1):217-42. PubMed ID: 19226668
    [Abstract] [Full Text] [Related]

  • 20. A novel link prediction algorithm for reconstructing protein-protein interaction networks by topological similarity.
    Lei C, Ruan J.
    Bioinformatics; 2013 Feb 01; 29(3):355-64. PubMed ID: 23235927
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.