These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
213 related items for PubMed ID: 28050608
1. An in situ poly(carboxybetaine) hydrogel for tissue engineering applications. Chien HW, Yu J, Li ST, Chen HY, Tsai WB. Biomater Sci; 2017 Jan 31; 5(2):322-330. PubMed ID: 28050608 [Abstract] [Full Text] [Related]
7. Uniform zwitterionic polymer hydrogels with a nonfouling and functionalizable crosslinker using photopolymerization. Carr LR, Zhou Y, Krause JE, Xue H, Jiang S. Biomaterials; 2011 Oct 31; 32(29):6893-9. PubMed ID: 21704366 [Abstract] [Full Text] [Related]
9. Zwitterionic poly(carboxybetaine) hydrogels for glucose biosensors in complex media. Yang W, Xue H, Carr LR, Wang J, Jiang S. Biosens Bioelectron; 2011 Jan 15; 26(5):2454-9. PubMed ID: 21111598 [Abstract] [Full Text] [Related]
10. Preparation and characterization of protein-resistant hydrogels for soft contact lens applications via radical copolymerization involving a zwitterionic sulfobetaine comonomer. Zhang W, Li G, Lin Y, Wang L, Wu S. J Biomater Sci Polym Ed; 2017 Nov 15; 28(16):1935-1949. PubMed ID: 28799461 [Abstract] [Full Text] [Related]
11. Different in vitro and in vivo behaviors between Poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate). Lin W, Ma G, Wu J, Chen S. Colloids Surf B Biointerfaces; 2016 Oct 01; 146():888-94. PubMed ID: 27459415 [Abstract] [Full Text] [Related]
15. Engineering the polymer backbone to strengthen nonfouling sulfobetaine hydrogels. Carr L, Cheng G, Xue H, Jiang S. Langmuir; 2010 Sep 21; 26(18):14793-8. PubMed ID: 20731337 [Abstract] [Full Text] [Related]
16. Zwitterionic starch-based hydrogel for the expansion and "stemness" maintenance of brown adipose derived stem cells. Dong D, Hao T, Wang C, Zhang Y, Qin Z, Yang B, Fang W, Ye L, Yao F, Li J. Biomaterials; 2018 Mar 21; 157():149-160. PubMed ID: 29272722 [Abstract] [Full Text] [Related]
19. Reductively Degradable Poly(2-hydroxyethyl methacrylate) Hydrogels with Oriented Porosity for Tissue Engineering Applications. Macková H, Plichta Z, Hlídková H, Sedláček O, Konefal R, Sadakbayeva Z, Dušková-Smrčková M, Horák D, Kubinová Š. ACS Appl Mater Interfaces; 2017 Mar 29; 9(12):10544-10553. PubMed ID: 28287694 [Abstract] [Full Text] [Related]
20. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Kimura M, Takai M, Ishihara K. J Biomed Mater Res A; 2007 Jan 29; 80(1):45-54. PubMed ID: 16958047 [Abstract] [Full Text] [Related] Page: [Next] [New Search]