These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 28052075
1. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation. Pawlowski MN, Crow SE, Meki MN, Kiniry JR, Taylor AD, Ogoshi R, Youkhana A, Nakahata M. PLoS One; 2017; 12(1):e0168510. PubMed ID: 28052075 [Abstract] [Full Text] [Related]
3. Greenhouse gas emissions and global warming potential from biofuel cropping systems fertilized with mineral and organic nitrogen sources. Pilecco GE, Chantigny MH, Weiler DA, Aita C, Thivierge MN, Schmatz R, Chaves B, Giacomini SJ. Sci Total Environ; 2020 Aug 10; 729():138767. PubMed ID: 32387769 [Abstract] [Full Text] [Related]
4. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Mosier AR, Halvorson AD, Reule CA, Liu XJ. J Environ Qual; 2006 Aug 10; 35(4):1584-98. PubMed ID: 16825479 [Abstract] [Full Text] [Related]
5. Soil greenhouse gas emissions affected by irrigation, tillage, crop rotation, and nitrogen fertilization. Sainju UM, Stevens WB, Caesar-Tonthat T, Liebig MA. J Environ Qual; 2012 Aug 10; 41(6):1774-86. PubMed ID: 23128735 [Abstract] [Full Text] [Related]
6. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system. McGill BM, Hamilton SK, Millar N, Robertson GP. Glob Chang Biol; 2018 Dec 10; 24(12):5948-5960. PubMed ID: 30295393 [Abstract] [Full Text] [Related]
7. [Effects of Water Deficit on Greenhouse Gas Emission in Wheat Field in Different Periods]. Wang XY, Cai HJ, Li L, Xu JT, Chen H. Huan Jing Ke Xue; 2019 May 08; 40(5):2413-2425. PubMed ID: 31087883 [Abstract] [Full Text] [Related]
8. [Effects of Water and Fertilization Management on CH4 and N2O Emissions in Double-rice Paddy Fields in Tropical Regions]. Li JQ, Shao XH, Gou GL, Deng YX, Tan SM, Xu WX, Yang Q, Liu WJ, Wu YZ, Meng L, Tang SR. Huan Jing Ke Xue; 2021 Jul 08; 42(7):3458-3471. PubMed ID: 34212673 [Abstract] [Full Text] [Related]
9. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Adler PR, Del Grosso SJ, Parton WJ. Ecol Appl; 2007 Apr 08; 17(3):675-91. PubMed ID: 17494388 [Abstract] [Full Text] [Related]
10. Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields. Tu C, Li F. J Environ Sci (China); 2017 Apr 08; 54():314-327. PubMed ID: 28391942 [Abstract] [Full Text] [Related]
11. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn. Jin VL, Schmer MR, Stewart CE, Sindelar AJ, Varvel GE, Wienhold BJ. Glob Chang Biol; 2017 Jul 08; 23(7):2848-2862. PubMed ID: 28135027 [Abstract] [Full Text] [Related]
12. Greenhouse gas fluxes (CO2, N2O and CH4) of pea and maize during two cropping seasons: Drivers, budgets, and emission factors for nitrous oxide. Maier R, Hörtnagl L, Buchmann N. Sci Total Environ; 2022 Nov 25; 849():157541. PubMed ID: 35882341 [Abstract] [Full Text] [Related]
13. Yield and gas exchange of greenhouse tomato at different nitrogen levels under aerated irrigation. Du YD, Gu XB, Wang JW, Niu WQ. Sci Total Environ; 2019 Jun 10; 668():1156-1164. PubMed ID: 31018455 [Abstract] [Full Text] [Related]
14. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Gao B, Huang T, Ju X, Gu B, Huang W, Xu L, Rees RM, Powlson DS, Smith P, Cui S. Glob Chang Biol; 2018 Dec 10; 24(12):5590-5606. PubMed ID: 30118572 [Abstract] [Full Text] [Related]
15. Perennial forb invasions alter greenhouse gas balance between ecosystem and atmosphere in an annual grassland in China. Zhang L, Wang S, Liu S, Liu X, Zou J, Siemann E. Sci Total Environ; 2018 Nov 15; 642():781-788. PubMed ID: 29920464 [Abstract] [Full Text] [Related]
16. Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. Islam SMM, Gaihre YK, Islam MR, Ahmed MN, Akter M, Singh U, Sander BO. J Environ Manage; 2022 Apr 01; 307():114520. PubMed ID: 35066193 [Abstract] [Full Text] [Related]
17. Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop. Duval BD, Anderson-Teixeira KJ, Davis SC, Keogh C, Long SP, Parton WJ, DeLucia EH. PLoS One; 2013 Apr 01; 8(8):e72019. PubMed ID: 23991028 [Abstract] [Full Text] [Related]
18. Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops. Abalos D, Sanchez-Martin L, Garcia-Torres L, van Groenigen JW, Vallejo A. Sci Total Environ; 2014 Aug 15; 490():880-8. PubMed ID: 24908647 [Abstract] [Full Text] [Related]
19. Warming-induced greenhouse gas fluxes from global croplands modified by agricultural practices: A meta-analysis. Gao H, Tian H, Zhang Z, Xia X. Sci Total Environ; 2022 May 10; 820():153288. PubMed ID: 35066045 [Abstract] [Full Text] [Related]
20. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application. Bamminger C, Poll C, Marhan S. Glob Chang Biol; 2018 Jan 10; 24(1):e318-e334. PubMed ID: 28816416 [Abstract] [Full Text] [Related] Page: [Next] [New Search]