These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 28056144

  • 1. In vivo three-dimensional imaging of human corneal nerves using Fourier-domain optical coherence tomography.
    Shin JG, Hwang HS, Eom TJ, Lee BH.
    J Biomed Opt; 2017 Jan 01; 22(1):10501. PubMed ID: 28056144
    [Abstract] [Full Text] [Related]

  • 2. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
    Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS.
    Ophthalmology; 2005 Oct 01; 112(10):1734-46. PubMed ID: 16140383
    [Abstract] [Full Text] [Related]

  • 3. Comparison of fourier-domain and time-domain optical coherence tomography for assessment of corneal thickness and intersession repeatability.
    Prakash G, Agarwal A, Jacob S, Kumar DA, Agarwal A, Banerjee R.
    Am J Ophthalmol; 2009 Aug 01; 148(2):282-290.e2. PubMed ID: 19442961
    [Abstract] [Full Text] [Related]

  • 4. Comparison of central corneal thickness measurements using optical low-coherence reflectometry, Fourier domain optical coherence tomography, and Scheimpflug camera.
    Gonul S, Koktekir BE, Bakbak B, Gedik S.
    Arq Bras Oftalmol; 2014 Aug 01; 77(6):345-50. PubMed ID: 25627178
    [Abstract] [Full Text] [Related]

  • 5. Optical coherence tomography for in situ monitoring of laser corneal ablation.
    Bagayev SN, Gelikonov VM, Gelikonov GV, Kargapoltsev ES, Kuranov RV, Razhev AM, Turchin IV, Zhupikov AA.
    J Biomed Opt; 2002 Oct 01; 7(4):633-42. PubMed ID: 12421132
    [Abstract] [Full Text] [Related]

  • 6. Measurement of central corneal thickness by high-resolution Scheimpflug imaging, Fourier-domain optical coherence tomography and ultrasound pachymetry.
    Chen S, Huang J, Wen D, Chen W, Huang D, Wang Q.
    Acta Ophthalmol; 2012 Aug 01; 90(5):449-55. PubMed ID: 20560892
    [Abstract] [Full Text] [Related]

  • 7. Fourier-domain optical coherence tomography imaging in keratoconus: a corneal structural classification.
    Sandali O, El Sanharawi M, Temstet C, Hamiche T, Galan A, Ghouali W, Goemaere I, Basli E, Borderie V, Laroche L.
    Ophthalmology; 2013 Dec 01; 120(12):2403-2412. PubMed ID: 23932599
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Higher-order regression three-dimensional motion-compensation method for real-time optical coherence tomography volumetric imaging of the cornea.
    Zuo R, Irsch K, Kang JU.
    J Biomed Opt; 2022 Jun 01; 27(6):. PubMed ID: 35751143
    [Abstract] [Full Text] [Related]

  • 13. Features of age-related macular degeneration assessed with three-dimensional Fourier-domain optical coherence tomography.
    Menke MN, Dabov S, Sturm V.
    Br J Ophthalmol; 2008 Nov 01; 92(11):1492-7. PubMed ID: 18703554
    [Abstract] [Full Text] [Related]

  • 14. The diagnostic significance of Fourier-domain optical coherence tomography in Sjögren syndrome, aqueous tear deficiency and lipid tear deficiency patients.
    Qiu X, Gong L, Lu Y, Jin H, Robitaille M.
    Acta Ophthalmol; 2012 Aug 01; 90(5):e359-66. PubMed ID: 22568661
    [Abstract] [Full Text] [Related]

  • 15. Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography.
    Latour G, Georges G, Lamoine LS, Deumié C, Conrath J, Hoffart L.
    J Biomed Opt; 2010 Aug 01; 15(5):056006. PubMed ID: 21054100
    [Abstract] [Full Text] [Related]

  • 16. Three-beam spectral-domain optical coherence tomography for retinal imaging.
    Suehira N, Ooto S, Hangai M, Matsumoto K, Tomatsu N, Yuasa T, Yamada K, Yoshimura N.
    J Biomed Opt; 2012 Oct 01; 17(10):106001. PubMed ID: 23224000
    [Abstract] [Full Text] [Related]

  • 17. In vivo evaluation of the cornea and conjunctiva of the normal laboratory beagle using time- and Fourier-domain optical coherence tomography and ultrasound pachymetry.
    Strom AR, Cortés DE, Rasmussen CA, Thomasy SM, McIntyre K, Lee SF, Kass PH, Mannis MJ, Murphy CJ.
    Vet Ophthalmol; 2016 Jan 01; 19(1):50-6. PubMed ID: 25676065
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.