These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
567 related items for PubMed ID: 28056770
1. Genetic architecture of kernel composition in global sorghum germplasm. Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovich S. BMC Genomics; 2017 Jan 05; 18(1):15. PubMed ID: 28056770 [Abstract] [Full Text] [Related]
2. Genome-wide association study reveals that different pathways contribute to grain quality variation in sorghum (Sorghum bicolor). Kimani W, Zhang LM, Wu XY, Hao HQ, Jing HC. BMC Genomics; 2020 Jan 31; 21(1):112. PubMed ID: 32005168 [Abstract] [Full Text] [Related]
3. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. Rhodes DH, Hoffmann L, Rooney WL, Ramu P, Morris GP, Kresovich S. J Agric Food Chem; 2014 Nov 12; 62(45):10916-27. PubMed ID: 25272193 [Abstract] [Full Text] [Related]
4. Genetic dissection of sorghum grain quality traits using diverse and segregating populations. Boyles RE, Pfeiffer BK, Cooper EA, Rauh BL, Zielinski KJ, Myers MT, Brenton Z, Rooney WL, Kresovich S. Theor Appl Genet; 2017 Apr 12; 130(4):697-716. PubMed ID: 28028582 [Abstract] [Full Text] [Related]
5. Genome-Wide Association Studies of Grain Yield Components in Diverse Sorghum Germplasm. Boyles RE, Cooper EA, Myers MT, Brenton Z, Rauh BL, Morris GP, Kresovich S. Plant Genome; 2016 Jul 12; 9(2):. PubMed ID: 27898823 [Abstract] [Full Text] [Related]
6. Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae). Zhang D, Li J, Compton RO, Robertson J, Goff VH, Epps E, Kong W, Kim C, Paterson AH. G3 (Bethesda); 2015 Mar 31; 5(6):1117-28. PubMed ID: 25834216 [Abstract] [Full Text] [Related]
7. Development and characterization of a sorghum multi-parent advanced generation intercross (MAGIC) population for capturing diversity among seed parent gene pool. Kumar N, Boatwright JL, Brenton ZW, Sapkota S, Ballén-Taborda C, Myers MT, Cox WA, Jordan KE, Kresovich S, Boyles RE. G3 (Bethesda); 2023 Apr 11; 13(4):. PubMed ID: 36755443 [Abstract] [Full Text] [Related]
8. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection. Rayaprolu L, Selvanayagam S, Rao DM, Gupta R, Das RR, Rathore A, Gandham P, Kiranmayee KNSU, Deshpande SP, Are AK. Protein Pept Lett; 2021 Apr 11; 28(8):909-928. PubMed ID: 33588716 [Abstract] [Full Text] [Related]
9. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement. Cuevas HE, Rosa-Valentin G, Hayes CM, Rooney WL, Hoffmann L. BMC Genomics; 2017 Jan 26; 18(1):108. PubMed ID: 28125967 [Abstract] [Full Text] [Related]
10. Genetic variation for grain nutritional profile and yield potential in sorghum and the possibility of selection for drought tolerance under irrigated conditions. Kamal NM, Gorafi YSA, Tomemori H, Kim JS, Elhadi GMI, Tsujimoto H. BMC Genomics; 2023 Sep 02; 24(1):515. PubMed ID: 37660014 [Abstract] [Full Text] [Related]
11. Advancing provitamin A biofortification in sorghum: Genome-wide association studies of grain carotenoids in global germplasm. Cruet-Burgos C, Cox S, Ioerger BP, Perumal R, Hu Z, Herald TJ, Bean SR, Rhodes DH. Plant Genome; 2020 Mar 02; 13(1):e20013. PubMed ID: 33016639 [Abstract] [Full Text] [Related]
12. Genome-wide association analysis reveals seed protein loci as determinants of variations in grain mold resistance in sorghum. Nida H, Girma G, Mekonen M, Tirfessa A, Seyoum A, Bejiga T, Birhanu C, Dessalegn K, Senbetay T, Ayana G, Tesso T, Ejeta G, Mengiste T. Theor Appl Genet; 2021 Apr 02; 134(4):1167-1184. PubMed ID: 33452894 [Abstract] [Full Text] [Related]
13. Genome-Wide Association Study for Nine Plant Architecture Traits in Sorghum. Zhao J, Mantilla Perez MB, Hu J, Salas Fernandez MG. Plant Genome; 2016 Jul 02; 9(2):. PubMed ID: 27898806 [Abstract] [Full Text] [Related]
15. Manipulating assimilate availability provides insight into the genes controlling grain size in sorghum. Tao Y, Trusov Y, Zhao X, Wang X, Cruickshank AW, Hunt C, van Oosterom EJ, Hathorn A, Liu G, Godwin ID, Botella JR, Mace ES, Jordan DR. Plant J; 2021 Oct 02; 108(1):231-243. PubMed ID: 34309934 [Abstract] [Full Text] [Related]
16. Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retention in two genotypes. Teixeira Nde C, Queiroz VA, Rocha MC, Amorim AC, Soares TO, Monteiro MA, de Menezes CB, Schaffert RE, Garcia MA, Junqueira RG. Food Chem; 2016 Apr 15; 197(Pt A):291-6. PubMed ID: 26616952 [Abstract] [Full Text] [Related]
17. Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population. Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tuinstra M, Morris GP. Genetics; 2017 Jun 15; 206(2):573-585. PubMed ID: 28592497 [Abstract] [Full Text] [Related]
18. Fine mapping of qGW1, a major QTL for grain weight in sorghum. Han L, Chen J, Mace ES, Liu Y, Zhu M, Yuyama N, Jordan DR, Cai H. Theor Appl Genet; 2015 Sep 15; 128(9):1813-25. PubMed ID: 26071275 [Abstract] [Full Text] [Related]
19. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. Tao Y, Zhao X, Wang X, Hathorn A, Hunt C, Cruickshank AW, van Oosterom EJ, Godwin ID, Mace ES, Jordan DR. Plant Biotechnol J; 2020 Apr 15; 18(4):1093-1105. PubMed ID: 31659829 [Abstract] [Full Text] [Related]
20. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench]. Nagaraja Reddy R, Madhusudhana R, Murali Mohan S, Chakravarthi DV, Mehtre SP, Seetharama N, Patil JV. Theor Appl Genet; 2013 Aug 15; 126(8):1921-39. PubMed ID: 23649648 [Abstract] [Full Text] [Related] Page: [Next] [New Search]