These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


300 related items for PubMed ID: 28056789

  • 1. Evolutionary diversification of Pseudomonas aeruginosa in an artificial sputum model.
    Davies EV, James CE, Brockhurst MA, Winstanley C.
    BMC Microbiol; 2017 Jan 05; 17(1):3. PubMed ID: 28056789
    [Abstract] [Full Text] [Related]

  • 2. Unveiling the early events of Pseudomonas aeruginosa adaptation in cystic fibrosis airway environment using a long-term in vitro maintenance.
    Sousa AM, Monteiro R, Pereira MO.
    Int J Med Microbiol; 2018 Dec 05; 308(8):1053-1064. PubMed ID: 30377031
    [Abstract] [Full Text] [Related]

  • 3. Temperate phages both mediate and drive adaptive evolution in pathogen biofilms.
    Davies EV, James CE, Williams D, O'Brien S, Fothergill JL, Haldenby S, Paterson S, Winstanley C, Brockhurst MA.
    Proc Natl Acad Sci U S A; 2016 Jul 19; 113(29):8266-71. PubMed ID: 27382184
    [Abstract] [Full Text] [Related]

  • 4. Phenotypic shift in Pseudomonas aeruginosa populations from cystic fibrosis lungs after 2-week antipseudomonal treatment.
    Fernández-Barat L, Ciofu O, Kragh KN, Pressler T, Johansen U, Motos A, Torres A, Hoiby N.
    J Cyst Fibros; 2017 Mar 19; 16(2):222-229. PubMed ID: 27651273
    [Abstract] [Full Text] [Related]

  • 5. Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response.
    Ciofu O.
    APMIS Suppl; 2003 Mar 19; (116):1-47. PubMed ID: 14692154
    [Abstract] [Full Text] [Related]

  • 6. Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection.
    Darch SE, McNally A, Harrison F, Corander J, Barr HL, Paszkiewicz K, Holden S, Fogarty A, Crusz SA, Diggle SP.
    Sci Rep; 2015 Jan 12; 5():7649. PubMed ID: 25578031
    [Abstract] [Full Text] [Related]

  • 7. Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung.
    Sriramulu DD, Lünsdorf H, Lam JS, Römling U.
    J Med Microbiol; 2005 Jul 12; 54(Pt 7):667-676. PubMed ID: 15947432
    [Abstract] [Full Text] [Related]

  • 8. Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed beta-lactamase producing strains.
    Giwercman B, Lambert PA, Rosdahl VT, Shand GH, Høiby N.
    J Antimicrob Chemother; 1990 Aug 12; 26(2):247-59. PubMed ID: 2170321
    [Abstract] [Full Text] [Related]

  • 9. Bacteriophages in sputum of cystic fibrosis patients as a possible cause of in vivo changes in serotypes of Pseudomonas aeruginosa.
    Ojeniyi B.
    APMIS; 1988 Apr 12; 96(4):294-8. PubMed ID: 3130885
    [Abstract] [Full Text] [Related]

  • 10. Rapid diversification of Pseudomonas aeruginosa in cystic fibrosis lung-like conditions.
    Schick A, Kassen R.
    Proc Natl Acad Sci U S A; 2018 Oct 16; 115(42):10714-10719. PubMed ID: 30275334
    [Abstract] [Full Text] [Related]

  • 11. Characterization by phenotypic and genotypic methods of metallo-β-lactamase-producing Pseudomonas aeruginosa isolated from patients with cystic fibrosis.
    Li Y, Zhang X, Wang C, Hu Y, Niu X, Pei D, He Z, Bi Y.
    Mol Med Rep; 2015 Jan 16; 11(1):494-8. PubMed ID: 25323940
    [Abstract] [Full Text] [Related]

  • 12. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung.
    Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C.
    J Vis Exp; 2012 Jun 05; (64):e3857. PubMed ID: 22711026
    [Abstract] [Full Text] [Related]

  • 13. Pseudomonas aeruginosa Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections.
    Winstanley C, O'Brien S, Brockhurst MA.
    Trends Microbiol; 2016 May 05; 24(5):327-337. PubMed ID: 26946977
    [Abstract] [Full Text] [Related]

  • 14. Anaerobic culture conditions favor biofilm-like phenotypes in Pseudomonas aeruginosa isolates from patients with cystic fibrosis.
    O'May CY, Reid DW, Kirov SM.
    FEMS Immunol Med Microbiol; 2006 Dec 05; 48(3):373-80. PubMed ID: 17052266
    [Abstract] [Full Text] [Related]

  • 15. In Vitro Comparison of Ceftolozane-Tazobactam to Traditional Beta-Lactams and Ceftolozane-Tazobactam as an Alternative to Combination Antimicrobial Therapy for Pseudomonas aeruginosa.
    Goodlet KJ, Nicolau DP, Nailor MD.
    Antimicrob Agents Chemother; 2017 Dec 05; 61(12):. PubMed ID: 28923865
    [Abstract] [Full Text] [Related]

  • 16. Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis.
    Evans TJ.
    Future Microbiol; 2015 Dec 05; 10(2):231-9. PubMed ID: 25689535
    [Abstract] [Full Text] [Related]

  • 17. Ceftolozane/tazobactam sensitivity patterns in Pseudomonas aeruginosa isolates recovered from sputum of cystic fibrosis patients.
    Finklea JD, Hollaway R, Lowe K, Lee F, Le J, Jain R.
    Diagn Microbiol Infect Dis; 2018 Sep 05; 92(1):75-77. PubMed ID: 29884565
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.