These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
475 related items for PubMed ID: 28062727
1. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought. Yi K, Dragoni D, Phillips RP, Roman DT, Novick KA. Tree Physiol; 2017 Oct 01; 37(10):1379-1392. PubMed ID: 28062727 [Abstract] [Full Text] [Related]
2. The xylem of anisohydric Quercus alba L. is more vulnerable to embolism than isohydric codominants. Benson MC, Miniat CF, Oishi AC, Denham SO, Domec JC, Johnson DM, Missik JE, Phillips RP, Wood JD, Novick KA. Plant Cell Environ; 2022 Feb 01; 45(2):329-346. PubMed ID: 34902165 [Abstract] [Full Text] [Related]
3. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP. Oecologia; 2015 Nov 01; 179(3):641-54. PubMed ID: 26130023 [Abstract] [Full Text] [Related]
4. Coarse roots prevent declines in whole-tree non-structural carbohydrate pools during drought in an isohydric and an anisohydric species. Kannenberg SA, Novick KA, Phillips RP. Tree Physiol; 2018 Apr 01; 38(4):582-590. PubMed ID: 29036648 [Abstract] [Full Text] [Related]
5. Isohydric species are not necessarily more carbon limited than anisohydric species during drought. Garcia-Forner N, Biel C, Savé R, Martínez-Vilalta J. Tree Physiol; 2017 Apr 01; 37(4):441-455. PubMed ID: 27885172 [Abstract] [Full Text] [Related]
6. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Daley MJ, Phillips NG. Tree Physiol; 2006 Apr 01; 26(4):411-9. PubMed ID: 16414920 [Abstract] [Full Text] [Related]
9. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Garcia-Forner N, Adams HD, Sevanto S, Collins AD, Dickman LT, Hudson PJ, Zeppel MJ, Jenkins MW, Powers H, Martínez-Vilalta J, Mcdowell NG. Plant Cell Environ; 2016 Jan 01; 39(1):38-49. PubMed ID: 26081870 [Abstract] [Full Text] [Related]
10. Hydraulic patterns and safety margins, from stem to stomata, in three eastern U.S. tree species. Johnson DM, McCulloh KA, Meinzer FC, Woodruff DR, Eissenstat DM. Tree Physiol; 2011 Jun 01; 31(6):659-68. PubMed ID: 21724585 [Abstract] [Full Text] [Related]
11. Differential drought resistance strategies of co-existing woodland species enduring the long rainless Eastern Mediterranean summer. Väänänen PJ, Osem Y, Cohen S, Grünzweig JM. Tree Physiol; 2020 Mar 11; 40(3):305-320. PubMed ID: 31860712 [Abstract] [Full Text] [Related]
16. Variable hydraulic resistances and their impact on plant drought response modelling. Baert A, De Schepper V, Steppe K. Tree Physiol; 2015 Apr 11; 35(4):439-49. PubMed ID: 25273815 [Abstract] [Full Text] [Related]
17. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought. Nolan RH, Tarin T, Santini NS, McAdam SAM, Ruman R, Eamus D. Plant Cell Environ; 2017 Dec 11; 40(12):3122-3134. PubMed ID: 28982212 [Abstract] [Full Text] [Related]
18. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S. Tree Physiol; 2013 Jul 11; 33(7):672-83. PubMed ID: 23658197 [Abstract] [Full Text] [Related]
19. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory. Novick KA, Miniat CF, Vose JM. Plant Cell Environ; 2016 Mar 11; 39(3):583-96. PubMed ID: 26466749 [Abstract] [Full Text] [Related]