These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


345 related items for PubMed ID: 28066461

  • 21. Restriction of cytosolic sucrose hydrolysis profoundly alters development, metabolism, and gene expression in Arabidopsis roots.
    Pignocchi C, Ivakov A, Feil R, Trick M, Pike M, Wang TL, Lunn JE, Smith AM.
    J Exp Bot; 2021 Feb 27; 72(5):1850-1863. PubMed ID: 33378456
    [Abstract] [Full Text] [Related]

  • 22. Dynamic carbon transfer during pathogenesis of sunflower by the necrotrophic fungus Botrytis cinerea: from plant hexoses to mannitol.
    Dulermo T, Rascle C, Chinnici G, Gout E, Bligny R, Cotton P.
    New Phytol; 2009 Feb 27; 183(4):1149-1162. PubMed ID: 19500266
    [Abstract] [Full Text] [Related]

  • 23. Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions.
    Sonnewald U, Brauer M, von Schaewen A, Stitt M, Willmitzer L.
    Plant J; 1991 Jul 27; 1(1):95-106. PubMed ID: 1844880
    [Abstract] [Full Text] [Related]

  • 24. Analysis of Phenotypic Characteristics and Sucrose Metabolism in the Roots of Raphanus sativus L.
    Kang JN, Kim JS, Lee SM, Won SY, Seo MS, Kwon SJ.
    Front Plant Sci; 2021 Jul 27; 12():716782. PubMed ID: 34745157
    [Abstract] [Full Text] [Related]

  • 25. Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival.
    Zeng Y, Wu Y, Avigne WT, Koch KE.
    Plant Physiol; 1999 Oct 27; 121(2):599-608. PubMed ID: 10517852
    [Abstract] [Full Text] [Related]

  • 26. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis.
    Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM.
    J Exp Bot; 2003 Jan 27; 54(382):525-31. PubMed ID: 12508063
    [Abstract] [Full Text] [Related]

  • 27. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea.
    Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, Mestre P.
    J Exp Bot; 2014 Dec 27; 65(22):6589-601. PubMed ID: 25246444
    [Abstract] [Full Text] [Related]

  • 28. Multiscale QM/MM Simulations Identify the Roles of Asp239 and 1-OH···Nucleophile in Transition State Stabilization in Arabidopsis thaliana Cell-Wall Invertase 1.
    Meelua W, Wanjai T, Thinkumrob N, Friedman R, Jitonnom J.
    J Chem Inf Model; 2023 Aug 14; 63(15):4827-4838. PubMed ID: 37503869
    [Abstract] [Full Text] [Related]

  • 29. Sucrose uptake, invertase localization and gene expression in developing fruit of Lycopersicon esculentum and the sucrose-accumulating Lycopersicon hirsutum.
    Miron D, Petreikov M, Carmi N, Shen S, Levin I, Granot D, Zamski E, Schaffer AA.
    Physiol Plant; 2002 May 14; 115(1):35-47. PubMed ID: 12010465
    [Abstract] [Full Text] [Related]

  • 30. Cell Wall Invertase 3 Affects Cassava Productivity via Regulating Sugar Allocation From Source to Sink.
    Yan W, Wu X, Li Y, Liu G, Cui Z, Jiang T, Ma Q, Luo L, Zhang P.
    Front Plant Sci; 2019 May 14; 10():541. PubMed ID: 31114601
    [Abstract] [Full Text] [Related]

  • 31. The developmental and organ specific expression of sucrose cleaving enzymes in sugar beet suggests a transition between apoplasmic and symplasmic phloem unloading in the tap roots.
    Godt D, Roitsch T.
    Plant Physiol Biochem; 2006 May 14; 44(11-12):656-65. PubMed ID: 17095237
    [Abstract] [Full Text] [Related]

  • 32. Organ-specific expression of genes associated with the UDP-glucose metabolism in sugarcane (Saccharum spp. hybrids).
    Mason PJ, Hoang NV, Botha FC, Furtado A, Marquardt A, Henry RJ.
    BMC Genomics; 2023 Jan 13; 24(1):18. PubMed ID: 36639618
    [Abstract] [Full Text] [Related]

  • 33. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning.
    Tang GQ, Lüscher M, Sturm A.
    Plant Cell; 1999 Feb 13; 11(2):177-89. PubMed ID: 9927637
    [Abstract] [Full Text] [Related]

  • 34. Apoplastic invertases: Multi-faced players in the arbuscular mycorrhization.
    Schaarschmidt S, Hause B.
    Plant Signal Behav; 2008 May 13; 3(5):317-9. PubMed ID: 19841657
    [Abstract] [Full Text] [Related]

  • 35. Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response.
    Bonfig KB, Gabler A, Simon UK, Luschin-Ebengreuth N, Hatz M, Berger S, Muhammad N, Zeier J, Sinha AK, Roitsch T.
    Mol Plant; 2010 Nov 13; 3(6):1037-48. PubMed ID: 20833735
    [Abstract] [Full Text] [Related]

  • 36. Differential expression of vacuolar and defective cell wall invertase genes in roots and seeds of metalliferous and non-metalliferous populations of Rumex dentatus under copper stress.
    Xu ZR, Cai SW, Huang WX, Liu RX, Xiong ZT.
    Ecotoxicol Environ Saf; 2018 Jan 13; 147():17-25. PubMed ID: 28822946
    [Abstract] [Full Text] [Related]

  • 37. How pollen tubes fight for food: the impact of sucrose carriers and invertases of Arabidopsis thaliana on pollen development and pollen tube growth.
    Seitz J, Reimann TM, Fritz C, Schröder C, Knab J, Weber W, Stadler R.
    Front Plant Sci; 2023 Jan 13; 14():1063765. PubMed ID: 37469768
    [Abstract] [Full Text] [Related]

  • 38. Circadian and developmental regulation of vacuolar invertase expression in petioles of sugar beet plants.
    González MC, Roitsch T, Cejudo FJ.
    Planta; 2005 Oct 13; 222(2):386-95. PubMed ID: 16052318
    [Abstract] [Full Text] [Related]

  • 39. Molecular characterization and functional analysis of sucrose-cleaving enzymes in carrot (Daucus carota L.).
    Sturm A.
    J Exp Bot; 1996 Aug 13; 47 Spec No():1187-92. PubMed ID: 21245247
    [Abstract] [Full Text] [Related]

  • 40. Identification of transcription factors controlling cell wall invertase gene expression for reproductive development via bioinformatic and transgenic analyses.
    Li J, Foster R, Ma S, Liao SJ, Bliss S, Kartika D, Wang L, Wu L, Eamens AL, Ruan YL.
    Plant J; 2021 May 13; 106(4):1058-1074. PubMed ID: 33650173
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.