These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


502 related items for PubMed ID: 28068874

  • 41. Recovery of the Complete Data Set From Focused Transmit Beams.
    Bottenus N.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):30-38. PubMed ID: 29283345
    [Abstract] [Full Text] [Related]

  • 42. CohereNet: A Deep Learning Architecture for Ultrasound Spatial Correlation Estimation and Coherence-Based Beamforming.
    Wiacek A, Gonzalez E, Bell MAL.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2574-2583. PubMed ID: 32203018
    [Abstract] [Full Text] [Related]

  • 43. Regional-Lag Signed Delay Multiply and Sum Beamforming in Ultrafast Ultrasound Imaging.
    Yan X, Qi Y, Wang Y, Wang Y.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Feb; 69(2):580-591. PubMed ID: 34767507
    [Abstract] [Full Text] [Related]

  • 44. Short-lag Spatial Coherence Imaging in 1.5-D and 1.75-D Arrays: Elevation Performance and Array Design Considerations.
    Morgan MR, Hyun D, Trahey GE.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar 20. PubMed ID: 30908212
    [Abstract] [Full Text] [Related]

  • 45. Efficient Frequency-Domain Synthetic Aperture Focusing Techniques for Imaging With a High-Frequency Single-Element Focused Transducer.
    Shaswary E, Tavakkoli J, Kumaradas JC.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan 20; 66(1):57-70. PubMed ID: 30452355
    [Abstract] [Full Text] [Related]

  • 46. A joint method of coherence factor and nonlinear beamforming for synthetic aperture imaging with a ring array.
    Lan Z, Rong C, Han C, Qu X, Li J, Lin H.
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul 20; 2023():1-4. PubMed ID: 38082576
    [Abstract] [Full Text] [Related]

  • 47. Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging.
    Li ML, Guan WJ, Li PC.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan 20; 51(1):63-70. PubMed ID: 14995017
    [Abstract] [Full Text] [Related]

  • 48. Adaptive imaging using an optimal receive aperture size.
    Li ML, Huang SW, Ustüner K, Li PC.
    Ultrason Imaging; 2005 Apr 20; 27(2):111-27. PubMed ID: 16231840
    [Abstract] [Full Text] [Related]

  • 49. In vitro feasibility of next generation non-linear beamforming ultrasound methods to characterize and size kidney stones.
    Tierney JE, Schlunk SG, Jones R, George M, Karve P, Duddu R, Byram BC, Hsi RS.
    Urolithiasis; 2019 Apr 20; 47(2):181-188. PubMed ID: 29356874
    [Abstract] [Full Text] [Related]

  • 50. Improved ultrasound image quality with pixel-based beamforming using a Wiener-filter and a SNR-dependent coherence factor.
    Xie HW, Guo H, Zhou GQ, Nguyen NQ, Prager RW.
    Ultrasonics; 2022 Feb 20; 119():106594. PubMed ID: 34628298
    [Abstract] [Full Text] [Related]

  • 51. Delay-encoded transmission and image reconstruction method in synthetic transmit aperture imaging.
    Gong P, Kolios MC, Xu Y.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct 20; 62(10):1745-56. PubMed ID: 26470037
    [Abstract] [Full Text] [Related]

  • 52. Acoustic reciprocity of spatial coherence in ultrasound imaging.
    Bottenus N, Üstüner KF.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May 20; 62(5):852-61. PubMed ID: 25965679
    [Abstract] [Full Text] [Related]

  • 53. Intravascular Ultrasound Imaging With Virtual Source Synthetic Aperture Focusing and Coherence Factor Weighting.
    Yu M, Li Y, Ma T, Shung KK, Zhou Q.
    IEEE Trans Med Imaging; 2017 Oct 20; 36(10):2171-2178. PubMed ID: 28692968
    [Abstract] [Full Text] [Related]

  • 54. Benefits of minimum-variance beamforming in medical ultrasound imaging.
    Synnevag JF, Austeng A, Holm S.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Sep 20; 56(9):1868-79. PubMed ID: 19811990
    [Abstract] [Full Text] [Related]

  • 55. Apodized adaptive beamformer.
    Hasegawa H.
    J Med Ultrason (2001); 2017 Apr 20; 44(2):155-165. PubMed ID: 28084559
    [Abstract] [Full Text] [Related]

  • 56. GPU implementation of photoacoustic short-lag spatial coherence imaging for improved image-guided interventions.
    Gonzalez EA, Bell MAL.
    J Biomed Opt; 2020 Jul 20; 25(7):1-19. PubMed ID: 32713168
    [Abstract] [Full Text] [Related]

  • 57. Effect of element directivity on adaptive beamforming applied to high-frame-rate ultrasound.
    Hasegawa H, Kanai H.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Mar 20; 62(3):511-23. PubMed ID: 25768817
    [Abstract] [Full Text] [Related]

  • 58. An adaptive beamformer based on dynamic phase coherence factor for pixel-based medical ultrasound imaging.
    Wang Y, Zheng C, Wang Y, Feng S, Liu M, Peng H.
    Technol Health Care; 2023 Mar 20; 31(2):747-770. PubMed ID: 36314178
    [Abstract] [Full Text] [Related]

  • 59. Spatial Coherence Beamforming With Multi-Line Transmission to Enhance the Contrast of Coherent Structures in Ultrasound Images Degraded by Acoustic Clutter.
    Matrone G, Bell MAL, Ramalli A.
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec 20; 68(12):3570-3582. PubMed ID: 34310298
    [Abstract] [Full Text] [Related]

  • 60. Multi-line acquisition with delay multiply and sum beamforming in phased array ultrasound imaging, validation of simulation and in vitro.
    Wang Y, Su T, Zhang S.
    Ultrasonics; 2019 Jul 20; 96():123-131. PubMed ID: 30833183
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 26.