These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


382 related items for PubMed ID: 28069795

  • 1. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.
    Tian H, Feng J, Li J, Ho TV, Yuan Y, Liu Y, Brindopke F, Figueiredo JC, Magee W, Sanchez-Lara PA, Chai Y.
    Hum Mol Genet; 2017 Mar 01; 26(5):860-872. PubMed ID: 28069795
    [Abstract] [Full Text] [Related]

  • 2. RERE deficiency contributes to the development of orofacial clefts in humans and mice.
    Kim BJ, Zaveri HP, Kundert PN, Jordan VK, Scott TM, Carmichael J, Scott DA.
    Hum Mol Genet; 2021 May 12; 30(7):595-602. PubMed ID: 33772547
    [Abstract] [Full Text] [Related]

  • 3. Neural crest-specific deletion of Ldb1 leads to cleft secondary palate with impaired palatal shelf elevation.
    Almaidhan A, Cesario J, Landin Malt A, Zhao Y, Sharma N, Choi V, Jeong J.
    BMC Dev Biol; 2014 Jan 17; 14():3. PubMed ID: 24433583
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Identification of candidate downstream targets of TGFβ signaling during palate development by genome-wide transcript profiling.
    Pelikan RC, Iwata J, Suzuki A, Chai Y, Hacia JG.
    J Cell Biochem; 2013 Apr 17; 114(4):796-807. PubMed ID: 23060211
    [Abstract] [Full Text] [Related]

  • 6. Sonic hedgehog regulation of Foxf2 promotes cranial neural crest mesenchyme proliferation and is disrupted in cleft lip morphogenesis.
    Everson JL, Fink DM, Yoon JW, Leslie EJ, Kietzman HW, Ansen-Wilson LJ, Chung HM, Walterhouse DO, Marazita ML, Lipinski RJ.
    Development; 2017 Jun 01; 144(11):2082-2091. PubMed ID: 28506991
    [Abstract] [Full Text] [Related]

  • 7. Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factor β (TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis.
    Iwata J, Tung L, Urata M, Hacia JG, Pelikan R, Suzuki A, Ramenzoni L, Chaudhry O, Parada C, Sanchez-Lara PA, Chai Y.
    J Biol Chem; 2012 Jan 20; 287(4):2353-63. PubMed ID: 22123828
    [Abstract] [Full Text] [Related]

  • 8. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development.
    Xu J, Liu H, Lan Y, Aronow BJ, Kalinichenko VV, Jiang R.
    PLoS Genet; 2016 Jan 20; 12(1):e1005769. PubMed ID: 26745863
    [Abstract] [Full Text] [Related]

  • 9. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.
    Parada C, Han D, Grimaldi A, Sarrión P, Park SS, Pelikan R, Sanchez-Lara PA, Chai Y.
    Development; 2015 Nov 01; 142(21):3734-45. PubMed ID: 26395480
    [Abstract] [Full Text] [Related]

  • 10. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.
    Song Z, Liu C, Iwata J, Gu S, Suzuki A, Sun C, He W, Shu R, Li L, Chai Y, Chen Y.
    J Biol Chem; 2013 Apr 12; 288(15):10440-50. PubMed ID: 23460641
    [Abstract] [Full Text] [Related]

  • 11. Patched1 is required in neural crest cells for the prevention of orofacial clefts.
    Metzis V, Courtney AD, Kerr MC, Ferguson C, Rondón Galeano MC, Parton RG, Wainwright BJ, Wicking C.
    Hum Mol Genet; 2013 Dec 15; 22(24):5026-35. PubMed ID: 23900075
    [Abstract] [Full Text] [Related]

  • 12. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects.
    Ito Y, Yeo JY, Chytil A, Han J, Bringas P, Nakajima A, Shuler CF, Moses HL, Chai Y.
    Development; 2003 Nov 15; 130(21):5269-80. PubMed ID: 12975342
    [Abstract] [Full Text] [Related]

  • 13. Cranial neural crest deletion of VEGFa causes cleft palate with aberrant vascular and bone development.
    Hill C, Jacobs B, Kennedy L, Rohde S, Zhou B, Baldwin S, Goudy S.
    Cell Tissue Res; 2015 Sep 15; 361(3):711-22. PubMed ID: 25759071
    [Abstract] [Full Text] [Related]

  • 14. Tissue-specific analysis of Fgf18 gene function in palate development.
    Yue M, Lan Y, Liu H, Wu Z, Imamura T, Jiang R.
    Dev Dyn; 2021 Apr 15; 250(4):562-573. PubMed ID: 33034111
    [Abstract] [Full Text] [Related]

  • 15. Primary cilia in murine palatal rugae development.
    Nakaniwa M, Kawasaki M, Kawasaki K, Yamada A, Meguro F, Takeyasu M, Ohazama A.
    Gene Expr Patterns; 2019 Dec 15; 34():119062. PubMed ID: 31226309
    [Abstract] [Full Text] [Related]

  • 16. Ciliopathy Protein Tmem107 Plays Multiple Roles in Craniofacial Development.
    Cela P, Hampl M, Shylo NA, Christopher KJ, Kavkova M, Landova M, Zikmund T, Weatherbee SD, Kaiser J, Buchtova M.
    J Dent Res; 2018 Jan 15; 97(1):108-117. PubMed ID: 28954202
    [Abstract] [Full Text] [Related]

  • 17. Molecular contribution to cleft palate production in cleft lip mice.
    Sasaki Y, Taya Y, Saito K, Fujita K, Aoba T, Fujiwara T.
    Congenit Anom (Kyoto); 2014 May 15; 54(2):94-9. PubMed ID: 24206222
    [Abstract] [Full Text] [Related]

  • 18. Ift88 limits bone formation in maxillary process through suppressing apoptosis.
    Watanabe M, Kawasaki M, Kawasaki K, Kitamura A, Nagai T, Kodama Y, Meguro F, Yamada A, Sharpe PT, Maeda T, Takagi R, Ohazama A.
    Arch Oral Biol; 2019 May 15; 101():43-50. PubMed ID: 30878609
    [Abstract] [Full Text] [Related]

  • 19. Requirement of Hyaluronan Synthase-2 in Craniofacial and Palate Development.
    Lan Y, Qin C, Jiang R.
    J Dent Res; 2019 Nov 15; 98(12):1367-1375. PubMed ID: 31509714
    [Abstract] [Full Text] [Related]

  • 20. Cilia-dependent GLI processing in neural crest cells is required for tongue development.
    Millington G, Elliott KH, Chang YT, Chang CF, Dlugosz A, Brugmann SA.
    Dev Biol; 2017 Apr 15; 424(2):124-137. PubMed ID: 28286175
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.