These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 28072559
1. Control of Endophytic Frankia Sporulation by Alnus Nodule Metabolites. Anne-Emmanuelle H, Hasna B, Antoine B, Marjolaine R, Guillaume M, Laetitia CG, Gilles C, Aude HB. Mol Plant Microbe Interact; 2017 Mar; 30(3):205-214. PubMed ID: 28072559 [Abstract] [Full Text] [Related]
2. In Planta Sporulation of Frankia spp. as a Determinant of Alder-Symbiont Interactions. Schwob G, Roy M, Pozzi AC, Herrera-Belaroussi A, Fernandez MP. Appl Environ Microbiol; 2018 Dec 01; 84(23):. PubMed ID: 30217853 [Abstract] [Full Text] [Related]
3. In-planta sporulation phenotype: a major life history trait to understand the evolution of Alnus-infective Frankia strains. Pozzi AC, Bautista-Guerrero HH, Nouioui I, Cotin-Galvan L, Pepin R, Fournier P, Menu F, Fernandez MP, Herrera-Belaroussi A. Environ Microbiol; 2015 Sep 01; 17(9):3125-38. PubMed ID: 25335453 [Abstract] [Full Text] [Related]
5. Candidatus Frankia nodulisporulans sp. nov., an Alnus glutinosa-infective Frankia species unable to grow in pure culture and able to sporulate in-planta. Herrera-Belaroussi A, Normand P, Pawlowski K, Fernandez MP, Wibberg D, Kalinowski J, Brachmann A, Berckx F, Lee N, Blom J, Pozzi AC, Fournier P, Bethencourt L, Dubost A, Abrouk D, Sellstedt A. Syst Appl Microbiol; 2020 Nov 01; 43(6):126134. PubMed ID: 33059155 [Abstract] [Full Text] [Related]
7. 3-Pentanol glycosides from root nodules of the actinorhizal plant Alnus cremastogyne. Xu Y, Xu Y, Huang Z, Luo Y, Gao R, Xue J, Lin C, Pawlowski K, Zhou Z, Wei X. Phytochemistry; 2023 Mar 01; 207():113582. PubMed ID: 36596436 [Abstract] [Full Text] [Related]
8. Symbiosis between Frankia and actinorhizal plants: root nodules of non-legumes. Pawlowski K, Sirrenberg A. Indian J Exp Biol; 2003 Oct 01; 41(10):1165-83. PubMed ID: 15242283 [Abstract] [Full Text] [Related]
9. Genomic Insights of Alnus-Infective Frankia Strains Reveal Unique Genetic Features and New Evidence on Their Host-Restricted Lifestyle. Kim Tiam S, Boubakri H, Bethencourt L, Abrouk D, Fournier P, Herrera-Belaroussi A. Genes (Basel); 2023 Feb 20; 14(2):. PubMed ID: 36833457 [Abstract] [Full Text] [Related]
10. The Frankia alni symbiotic transcriptome. Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho K. Mol Plant Microbe Interact; 2010 May 20; 23(5):593-607. PubMed ID: 20367468 [Abstract] [Full Text] [Related]
11. Frankia Diversity in Host Plant Root Nodules Is Independent of Abundance or Relative Diversity of Frankia Populations in Corresponding Rhizosphere Soils. Ben Tekaya S, Guerra T, Rodriguez D, Dawson JO, Hahn D. Appl Environ Microbiol; 2018 Mar 01; 84(5):. PubMed ID: 29247058 [Abstract] [Full Text] [Related]
12. Draft genome sequences for three unisolated Alnus-infective Frankia Sp+ strains, AgTrS, AiOr and AvVan, the first sequenced Frankia strains able to sporulate in-planta. Bethencourt L, Vautrin F, Taib N, Dubost A, Castro-Garcia L, Imbaud O, Abrouk D, Fournier P, Briolay J, Nguyen A, Normand P, Fernandez MP, Brochier-Armanet C, Herrera-Belaroussi A. J Genomics; 2019 Mar 01; 7():50-55. PubMed ID: 31588247 [Abstract] [Full Text] [Related]
13. Proposal of 'Candidatus Frankia alpina', the uncultured symbiont of Alnus alnobetula and A. incana that forms spore-containing nitrogen-fixing root nodules. Pozzi ACM, Herrera-Belaroussi A, Schwob G, Bautista-Guerrero HH, Bethencourt L, Fournier P, Dubost A, Abrouk D, Normand P, Fernandez MP. Int J Syst Evol Microbiol; 2020 Oct 01; 70(10):5453-5459. PubMed ID: 32910750 [Abstract] [Full Text] [Related]
14. Host species and habitat affect nodulation by specific Frankia genotypes in two species of Alnus in interior Alaska. Anderson MD, Ruess RW, Myrold DD, Taylor DL. Oecologia; 2009 Jul 01; 160(4):619-30. PubMed ID: 19352714 [Abstract] [Full Text] [Related]
15. Diminished exoproteome of Frankia spp. in culture and symbiosis. Mastronunzio JE, Huang Y, Benson DR. Appl Environ Microbiol; 2009 Nov 01; 75(21):6721-8. PubMed ID: 19749056 [Abstract] [Full Text] [Related]
16. Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D. Plant Physiol; 2011 Jun 01; 156(2):700-11. PubMed ID: 21464474 [Abstract] [Full Text] [Related]
18. Comparative genomics and proteogenomics highlight key molecular players involved in Frankia sporulation. Béthencourt L, Boubakri H, Taib N, Normand P, Armengaud J, Fournier P, Brochier-Armanet C, Herrera-Belaroussi A. Res Microbiol; 2019 Jun 01; 170(4-5):202-213. PubMed ID: 31018159 [Abstract] [Full Text] [Related]
19. Patterns of diversity, endemism and specialization in the root symbiont communities of alder species on the island of Corsica. Pozzi AC, Roy M, Nagati M, Schwob G, Manzi S, Gardes M, Moreau PA, Fernandez MP. New Phytol; 2018 Jul 01; 219(1):336-349. PubMed ID: 29377140 [Abstract] [Full Text] [Related]
20. Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Oliveira RS, Castro PM, Dodd JC, Vosátka M. Chemosphere; 2005 Sep 01; 60(10):1462-70. PubMed ID: 16054916 [Abstract] [Full Text] [Related] Page: [Next] [New Search]