These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 28085327

  • 1. Non-Boltzmann stationary distributions and nonequilibrium relations in active baths.
    Argun A, Moradi AR, Pinçe E, Bagci GB, Imparato A, Volpe G.
    Phys Rev E; 2016 Dec; 94(6-1):062150. PubMed ID: 28085327
    [Abstract] [Full Text] [Related]

  • 2. Work relations connecting nonequilibrium steady states without detailed balance.
    Tang Y, Yuan R, Chen J, Ao P.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042108. PubMed ID: 25974440
    [Abstract] [Full Text] [Related]

  • 3. Approach to equilibrium and nonequilibrium stationary distributions of interacting many-particle systems that are coupled to different heat baths.
    Netz RR.
    Phys Rev E; 2020 Feb; 101(2-1):022120. PubMed ID: 32168558
    [Abstract] [Full Text] [Related]

  • 4. Nonequilibrium work fluctuations for oscillators in non-Markovian baths.
    Mai T, Dhar A.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061101. PubMed ID: 17677214
    [Abstract] [Full Text] [Related]

  • 5. Nonequilibrium work relations for systems subject to mechanical and thermal changes.
    Chelli R.
    J Chem Phys; 2009 Feb 07; 130(5):054102. PubMed ID: 19206953
    [Abstract] [Full Text] [Related]

  • 6. Nonequilibrium work relation beyond the Boltzmann-Gibbs distribution.
    Tang Y, Yuan R, Ao P.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun 07; 89(6):062112. PubMed ID: 25019730
    [Abstract] [Full Text] [Related]

  • 7. Crooks Fluctuation Theorem for Single Polymer Dynamics in Time-Dependent Flows: Understanding Viscoelastic Hysteresis.
    Zhou Y, Latinwo F, Schroeder CM.
    Entropy (Basel); 2021 Dec 24; 24(1):. PubMed ID: 35052053
    [Abstract] [Full Text] [Related]

  • 8. Straightforward quantum-mechanical derivation of the Crooks fluctuation theorem and the Jarzynski equality.
    Cohen D, Imry Y.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul 24; 86(1 Pt 1):011111. PubMed ID: 23005372
    [Abstract] [Full Text] [Related]

  • 9. Heat fluctuations in a nonequilibrium bath.
    Gomez-Solano JR, Petrosyan A, Ciliberto S.
    Phys Rev Lett; 2011 May 20; 106(20):200602. PubMed ID: 21668212
    [Abstract] [Full Text] [Related]

  • 10. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium.
    Netz RR.
    J Chem Phys; 2018 May 14; 148(18):185101. PubMed ID: 29764155
    [Abstract] [Full Text] [Related]

  • 11. Tsallis statistics generalization of nonequilibrium work relations.
    Ponmurugan M.
    Phys Rev E; 2016 Mar 14; 93(3):032107. PubMed ID: 27078292
    [Abstract] [Full Text] [Related]

  • 12. Jarzynski equality, Crooks fluctuation theorem, and the fluctuation theorems of heat for arbitrary initial states.
    Gong Z, Quan HT.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul 14; 92(1):012131. PubMed ID: 26274148
    [Abstract] [Full Text] [Related]

  • 13. Test of the Jarzynski and Crooks fluctuation relations in an electronic system.
    Saira OP, Yoon Y, Tanttu T, Möttönen M, Averin DV, Pekola JP.
    Phys Rev Lett; 2012 Nov 02; 109(18):180601. PubMed ID: 23215263
    [Abstract] [Full Text] [Related]

  • 14. Comment regarding "On the Crooks fluctuation theorem and the Jarzynski equality" [J. Chem. Phys. 129, 091101 (2008)] and "Nonequilibrium fluctuation-dissipation theorem of Brownian dynamics" [J. Chem. Phys. 129, 144113 (2008)].
    Crooks GE.
    J Chem Phys; 2009 Mar 14; 130(10):107101; discussion 107102. PubMed ID: 19292558
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Heavy-tailed phase-space distributions beyond Boltzmann-Gibbs: Confined laser-cooled atoms in a nonthermal state.
    Dechant A, Shafier ST, Kessler DA, Barkai E.
    Phys Rev E; 2016 Aug 14; 94(2-1):022151. PubMed ID: 27627290
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Stationary superstatistics distributions of trapped run-and-tumble particles.
    Sevilla FJ, Arzola AV, Cital EP.
    Phys Rev E; 2019 Jan 14; 99(1-1):012145. PubMed ID: 30780275
    [Abstract] [Full Text] [Related]

  • 19. Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements.
    Gore J, Ritort F, Bustamante C.
    Proc Natl Acad Sci U S A; 2003 Oct 28; 100(22):12564-9. PubMed ID: 14528008
    [Abstract] [Full Text] [Related]

  • 20. Nonequilibrium Thermodynamics in Biochemical Systems and Its Application.
    Zhang D, Ouyang Q.
    Entropy (Basel); 2021 Feb 25; 23(3):. PubMed ID: 33668768
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.