These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats. Chung J, Kim MH, Yoon YJ, Kim KH, Park SR, Choi BH. J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652 [Abstract] [Full Text] [Related]
5. [Effect of chondroitinase ABC on axonal myelination and glial scar after spinal cord injury in rats]. Zhang T, Shen Y, Lu L, Fan Z, Huo W. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Feb; 27(2):145-50. PubMed ID: 23596678 [Abstract] [Full Text] [Related]
6. [Effect of lentivirus-mediated small interfering RNA on mitogen- and stress-activated protein kinase 1 in spinal cord injury of rats]. Zhong Z, Zhou Y, Feng S, Huang Y, Chen X. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jul 15; 32(7):941-950. PubMed ID: 30129321 [Abstract] [Full Text] [Related]
7. Lentivirus-mediated silencing of the PTC1 and PTC2 genes promotes recovery from spinal cord injury by activating the Hedgehog signaling pathway in a rat model. Zhang YD, Zhu ZS, Zhang D, Zhang Z, Ma B, Zhao SC, Xue F. Exp Mol Med; 2017 Dec 15; 49(12):e412. PubMed ID: 29244790 [Abstract] [Full Text] [Related]
8. Role of telomerase reverse transcriptase in glial scar formation after spinal cord injury in rats. Tao X, Ming-Kun Y, Wei-Bin S, Hai-Long G, Rui K, Lai-Yong T. Neurochem Res; 2013 Sep 15; 38(9):1914-20. PubMed ID: 23793903 [Abstract] [Full Text] [Related]
9. Spinal cord injury induction of lesional expression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells. Conrad S, Schluesener HJ, Adibzahdeh M, Schwab JM. J Neurosurg Spine; 2005 Mar 15; 2(3):319-26. PubMed ID: 15796357 [Abstract] [Full Text] [Related]
10. Evaluation of the effect of tranilast on rats with spinal cord injury. Hanada M, Tsutsumi K, Arima H, Shinjo R, Sugiura Y, Imagama S, Ishiguro N, Matsuyama Y. J Neurol Sci; 2014 Nov 15; 346(1-2):209-15. PubMed ID: 25194634 [Abstract] [Full Text] [Related]
11. Lentivirus-mediated inhibition of AQP4 accelerates motor function recovery associated with NGF in spinal cord contusion rats. Chen J, Zeng X, Li S, Zhong Z, Hu X, Xiang H, Rao Y, Zhang L, Zhou X, Xia Q, Wang T, Zhang X. Brain Res; 2017 Aug 15; 1669():106-113. PubMed ID: 28549966 [Abstract] [Full Text] [Related]
12. Lentiviral-mediated silencing of glial fibrillary acidic protein and vimentin promotes anatomical plasticity and functional recovery after spinal cord injury. Desclaux M, Perrin FE, Do-Thi A, Prieto-Cappellini M, Gimenez Y Ribotta M, Mallet J, Privat A. J Neurosci Res; 2015 Jan 15; 93(1):43-55. PubMed ID: 25131829 [Abstract] [Full Text] [Related]
13. [Effect of suppressing apoptosis signal regulating kinase 1 on GFAP and vimentin expression and hindlimb mobility in rats after spinal cord injury]. Li TZ, Yan Y, Liu Q, Xia YZ. Nan Fang Yi Ke Da Xue Xue Bao; 2015 Jun 15; 35(6):795-800. PubMed ID: 26111673 [Abstract] [Full Text] [Related]
14. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG. Povysheva T, Shmarov M, Logunov D, Naroditsky B, Shulman I, Ogurcov S, Kolesnikov P, Islamov R, Chelyshev Y. J Neurosurg Spine; 2017 Jul 15; 27(1):105-115. PubMed ID: 28452633 [Abstract] [Full Text] [Related]
15. Effects of electroacupuncture on glial scar generation in SCI model rats. Hu Y, Zhao H, Shi S, Zhao Y, Gao X, Sun J, Li Z, Yao H. Anat Rec (Hoboken); 2023 Dec 15; 306(12):3156-3168. PubMed ID: 36866416 [Abstract] [Full Text] [Related]
16. Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats. Song JL, Zheng W, Chen W, Qian Y, Ouyang YM, Fan CY. Exp Mol Med; 2017 May 19; 49(5):e332. PubMed ID: 28524176 [Abstract] [Full Text] [Related]
17. [TRANSPLANTATION OF NEURAL STEM CELLS INDUCED BY ALL-TRANS- RETINOIC ACID COMBINED WITH GLIAL CELL LINE DERIVED NEUROTROPHIC FACTOR AND CHONDROITINASE ABC FOR REPAIRING SPINAL CORD INJURY OF RATS]. Liao Y, Zhong D, Kang M, Yao S, Zhang Y, Yu Y. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug 19; 29(8):1009-15. PubMed ID: 26677625 [Abstract] [Full Text] [Related]
18. Protective effect of epigenetic silencing of CyclinD1 against spinal cord injury using bone marrow-derived mesenchymal stem cells in rats. Wang Y, Kong QJ, Sun JC, Xu XM, Yang Y, Liu N, Shi JG. J Cell Physiol; 2018 Jul 19; 233(7):5361-5369. PubMed ID: 29215736 [Abstract] [Full Text] [Related]
19. [Effects of cyclin dependent protein kinase inhibitor olomoucine on the microenvironment of axonal regeneration after spinal cord injury: an experiment with rats]. Tian DS, Wang W, Xu YL, Yu ZY, Xie MJ, Wang P, Zhang GB. Zhonghua Yi Xue Za Zhi; 2006 Apr 04; 86(13):901-5. PubMed ID: 16759516 [Abstract] [Full Text] [Related]
20. MiR-17 targets PTEN and facilitates glial scar formation after spinal cord injuries via the PI3K/Akt/mTOR pathway. Luan Y, Chen M, Zhou L. Brain Res Bull; 2017 Jan 04; 128():68-75. PubMed ID: 27693649 [Abstract] [Full Text] [Related] Page: [Next] [New Search]