These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 28096310
1. Characterization of the dTDP-Fuc3N and dTDP-Qui3N biosynthetic pathways in Campylobacter jejuni 81116. Li ZZ, Riegert AS, Goneau MF, Cunningham AM, Vinogradov E, Li J, Schoenhofen IC, Thoden JB, Holden HM, Gilbert M. Glycobiology; 2017 Apr 01; 27(4):358-369. PubMed ID: 28096310 [Abstract] [Full Text] [Related]
4. Structure of a sugar N-formyltransferase from Campylobacter jejuni. Thoden JB, Goneau MF, Gilbert M, Holden HM. Biochemistry; 2013 Sep 03; 52(35):6114-26. PubMed ID: 23898784 [Abstract] [Full Text] [Related]
5. Homologs of the Rml enzymes from Salmonella enterica are responsible for dTDP-beta-L-rhamnose biosynthesis in the gram-positive thermophile Aneurinibacillus thermoaerophilus DSM 10155. Graninger M, Kneidinger B, Bruno K, Scheberl A, Messner P. Appl Environ Microbiol; 2002 Aug 03; 68(8):3708-15. PubMed ID: 12147463 [Abstract] [Full Text] [Related]
6. Biochemical characterization of dTDP-D-Qui4N and dTDP-D-Qui4NAc biosynthetic pathways in Shigella dysenteriae type 7 and Escherichia coli O7. Wang Y, Xu Y, Perepelov AV, Qi Y, Knirel YA, Wang L, Feng L. J Bacteriol; 2007 Dec 03; 189(23):8626-35. PubMed ID: 17905981 [Abstract] [Full Text] [Related]
7. Structural characterization of enzymatic products in the dTDP-d-Qui4NFo biosynthetic pathway using electrospray ionization tandem mass spectrometry. Li DG, Liu B, Zhou DW. Rapid Commun Mass Spectrom; 2013 Mar 30; 27(6):681-90. PubMed ID: 23418147 [Abstract] [Full Text] [Related]
8. Biosynthesis of dTDP-3-acetamido-3,6-dideoxy-alpha-D-glucose. Pföstl A, Zayni S, Hofinger A, Kosma P, Schäffer C, Messner P. Biochem J; 2008 Feb 15; 410(1):187-94. PubMed ID: 17941826 [Abstract] [Full Text] [Related]
9. The role of WlaRG, WlaTB and WlaTC in lipooligosaccharide synthesis by Campylobacter jejuni strain 81116. Holden KM, Gilbert M, Coloe PJ, Li J, Fry BN. Microb Pathog; 2012 Jun 15; 52(6):344-52. PubMed ID: 22445818 [Abstract] [Full Text] [Related]
10. Donor specificity of YjiC glycosyltransferase determines the conjugation of cytosolic NDP-sugar in in vivo glycosylation reactions. Pandey RP, Parajuli P, Gurung RB, Sohng JK. Enzyme Microb Technol; 2016 Sep 15; 91():26-33. PubMed ID: 27444326 [Abstract] [Full Text] [Related]
11. Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis. Gilbert M, Brisson JR, Karwaski MF, Michniewicz J, Cunningham AM, Wu Y, Young NM, Wakarchuk WW. J Biol Chem; 2000 Feb 11; 275(6):3896-906. PubMed ID: 10660542 [Abstract] [Full Text] [Related]
12. Genetic analysis of lipooligosaccharide core biosynthesis in Campylobacter jejuni 81-176. Kanipes MI, Tan X, Akelaitis A, Li J, Rockabrand D, Guerry P, Monteiro MA. J Bacteriol; 2008 Mar 11; 190(5):1568-74. PubMed ID: 18156268 [Abstract] [Full Text] [Related]
13. The structure of glucose-1-phosphate thymidylyltransferase from Mycobacterium tuberculosis reveals the location of an essential magnesium ion in the RmlA-type enzymes. Brown HA, Thoden JB, Tipton PA, Holden HM. Protein Sci; 2018 Feb 11; 27(2):441-450. PubMed ID: 29076563 [Abstract] [Full Text] [Related]
14. Genetics behind the Biosynthesis of Nonulosonic Acid-Containing Lipooligosaccharides in Campylobacter coli. Kolehmainen A, Rossi M, Stupak J, Li J, Gilbert M, Wakarchuk W. J Bacteriol; 2019 Apr 15; 201(8):. PubMed ID: 30692173 [Abstract] [Full Text] [Related]
15. New role for the ankyrin repeat revealed by a study of the N-formyltransferase from Providencia alcalifaciens. Woodford CR, Thoden JB, Holden HM. Biochemistry; 2015 Jan 27; 54(3):631-8. PubMed ID: 25574689 [Abstract] [Full Text] [Related]
16. Kinetic and crystallographic analyses support a sequential-ordered bi bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. Zuccotti S, Zanardi D, Rosano C, Sturla L, Tonetti M, Bolognesi M. J Mol Biol; 2001 Nov 02; 313(4):831-43. PubMed ID: 11697907 [Abstract] [Full Text] [Related]
17. A novel NDP-6-deoxyhexosyl-4-ulose reductase in the pathway for the synthesis of thymidine diphosphate-D-fucose. Yoshida Y, Nakano Y, Nezu T, Yamashita Y, Koga T. J Biol Chem; 1999 Jun 11; 274(24):16933-9. PubMed ID: 10358040 [Abstract] [Full Text] [Related]
18. Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans. Feng L, Shou Q, Butcher RA. Biochem J; 2016 Jun 01; 473(11):1507-21. PubMed ID: 27009306 [Abstract] [Full Text] [Related]
19. Biochemical investigation of an N-acetyltransferase from Helicobacter pullorum. Griffiths WA, Spencer KD, Thoden JB, Holden HM. Protein Sci; 2021 Dec 01; 30(12):2418-2432. PubMed ID: 34651380 [Abstract] [Full Text] [Related]
20. Characterization of the lipopolysaccharide from Pasteurella multocida Heddleston serovar 9: identification of a proposed bi-functional dTDP-3-acetamido-3,6-dideoxy-α-D-glucose biosynthesis enzyme. Harper M, St Michael F, Vinogradov E, John M, Boyce JD, Adler B, Cox AD. Glycobiology; 2012 Mar 01; 22(3):332-44. PubMed ID: 22002973 [Abstract] [Full Text] [Related] Page: [Next] [New Search]