These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 28102100

  • 1. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics.
    Symonds A, Barbareschi G, Taylor S, Holloway C.
    Disabil Rehabil Assist Technol; 2018 Jan; 13(1):47-53. PubMed ID: 28102100
    [Abstract] [Full Text] [Related]

  • 2. The influence of verbal training and visual feedback on manual wheelchair propulsion.
    DeGroot KK, Hollingsworth HH, Morgan KA, Morris CL, Gray DB.
    Disabil Rehabil Assist Technol; 2009 Mar; 4(2):86-94. PubMed ID: 19253097
    [Abstract] [Full Text] [Related]

  • 3. A motor learning approach to training wheelchair propulsion biomechanics for new manual wheelchair users: A pilot study.
    Morgan KA, Tucker SM, Klaesner JW, Engsberg JR.
    J Spinal Cord Med; 2017 May; 40(3):304-315. PubMed ID: 26674751
    [Abstract] [Full Text] [Related]

  • 4. Biomechanic evaluation of upper-extremity symmetry during manual wheelchair propulsion over varied terrain.
    Hurd WJ, Morrow MM, Kaufman KR, An KN.
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1996-2002. PubMed ID: 18929029
    [Abstract] [Full Text] [Related]

  • 5. Handrim wheelchair propulsion training effect on overground propulsion using biomechanical real-time visual feedback.
    Rice IM, Pohlig RT, Gallagher JD, Boninger ML.
    Arch Phys Med Rehabil; 2013 Feb; 94(2):256-63. PubMed ID: 23022092
    [Abstract] [Full Text] [Related]

  • 6. Exploring the ecological validity and variability of a 10-min bout of wheeling.
    MacGillivray MK, Lam T, Klimstra M, Zehr EP, Sawatzky BJ.
    Disabil Rehabil Assist Technol; 2018 Apr; 13(3):287-292. PubMed ID: 28485185
    [Abstract] [Full Text] [Related]

  • 7. Impact of a wheelchair education protocol based on practice guidelines for preservation of upper-limb function: a randomized trial.
    Rice LA, Smith I, Kelleher AR, Greenwald K, Boninger ML.
    Arch Phys Med Rehabil; 2014 Jan; 95(1):10-19.e11. PubMed ID: 23856151
    [Abstract] [Full Text] [Related]

  • 8. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles.
    Rice I, Gagnon D, Gallagher J, Boninger M.
    J Spinal Cord Med; 2010 Jan; 33(1):33-42. PubMed ID: 20397442
    [Abstract] [Full Text] [Related]

  • 9. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia.
    Julien MC, Morgan K, Stephens CL, Standeven J, Engsberg J.
    Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111
    [Abstract] [Full Text] [Related]

  • 10. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review.
    Chow JW, Levy CE.
    Disabil Rehabil Assist Technol; 2011 May; 6(5):365-77. PubMed ID: 20932232
    [Abstract] [Full Text] [Related]

  • 11. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ, Hartog J, de Groot S, Lamoth CJ, Bekker MJ, van der Scheer JW, van der Woude LH, Veeger DH.
    J Neuroeng Rehabil; 2015 Mar 10; 12():26. PubMed ID: 25889389
    [Abstract] [Full Text] [Related]

  • 12. Shoulder kinetics during start-up and propulsion with a manual wheelchair within the initial phase of uninstructed training.
    Hybois S, Siegel A, Bascou J, Eydieux N, Vaslin P, Pillet H, Fodé P, Sauret C.
    Disabil Rehabil Assist Technol; 2018 Jan 10; 13(1):40-46. PubMed ID: 28100095
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL, Boninger ML, Koontz AM, Price R, Sisto SA, Tolerico ML, Cooper RA.
    Arch Phys Med Rehabil; 2008 Apr 10; 89(4):667-76. PubMed ID: 18373997
    [Abstract] [Full Text] [Related]

  • 15. Relationship between linear velocity and tangential push force while turning to change the direction of the manual wheelchair.
    Hwang S, Lin YS, Hogaboom NS, Wang LH, Koontz AM.
    Biomed Tech (Berl); 2017 Aug 28; 62(4):439-445. PubMed ID: 27639264
    [Abstract] [Full Text] [Related]

  • 16. Manual wheelchair pushrim biomechanics and axle position.
    Boninger ML, Baldwin M, Cooper RA, Koontz A, Chan L.
    Arch Phys Med Rehabil; 2000 May 28; 81(5):608-13. PubMed ID: 10807100
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.
    Rankin JW, Richter WM, Neptune RR.
    J Biomech; 2011 Apr 29; 44(7):1246-52. PubMed ID: 21397232
    [Abstract] [Full Text] [Related]

  • 19. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA, Trigo F, Bessems L, van der Woude LHV, Vegter RJK.
    J Neuroeng Rehabil; 2022 Mar 18; 19(1):30. PubMed ID: 35300710
    [Abstract] [Full Text] [Related]

  • 20. Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion.
    Boninger ML, Souza AL, Cooper RA, Fitzgerald SG, Koontz AM, Fay BT.
    Arch Phys Med Rehabil; 2002 May 18; 83(5):718-23. PubMed ID: 11994814
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.