These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
148 related items for PubMed ID: 28102545
1. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Almadanim MC, Alexandre BM, Rosa MTG, Sapeta H, Leitão AE, Ramalho JC, Lam TT, Negrão S, Abreu IA, Oliveira MM. Plant Cell Environ; 2017 Jul; 40(7):1197-1213. PubMed ID: 28102545 [Abstract] [Full Text] [Related]
2. The rice cold-responsive calcium-dependent protein kinase OsCPK17 is regulated by alternative splicing and post-translational modifications. Almadanim MC, Gonçalves NM, Rosa MTG, Alexandre BM, Cordeiro AM, Rodrigues M, Saibo NJM, Soares CM, Romão CV, Oliveira MM, Abreu IA. Biochim Biophys Acta Mol Cell Res; 2018 Feb; 1865(2):231-246. PubMed ID: 29100789 [Abstract] [Full Text] [Related]
3. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice. Liu Y, Xu C, Zhu Y, Zhang L, Chen T, Zhou F, Chen H, Lin Y. J Integr Plant Biol; 2018 Feb; 60(2):173-188. PubMed ID: 29193704 [Abstract] [Full Text] [Related]
4. Expression of rice Ca(2+)-dependent protein kinases (CDPKs) genes under different environmental stresses. Wan B, Lin Y, Mou T. FEBS Lett; 2007 Mar 20; 581(6):1179-89. PubMed ID: 17336300 [Abstract] [Full Text] [Related]
5. The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. Dey A, Samanta MK, Gayen S, Maiti MK. BMC Plant Biol; 2016 Jul 13; 16(1):158. PubMed ID: 27411911 [Abstract] [Full Text] [Related]
6. Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Matsumoto T, Lian HL, Su WA, Tanaka D, Liu Cw, Iwasaki I, Kitagawa Y. Plant Cell Physiol; 2009 Feb 13; 50(2):216-29. PubMed ID: 19098326 [Abstract] [Full Text] [Related]
7. The OsCPK17-OsPUB12-OsRLCK176 module regulates immune homeostasis in rice. Mou B, Zhao G, Wang J, Wang S, He F, Ning Y, Li D, Zheng X, Cui F, Xue F, Zhang S, Sun W. Plant Cell; 2024 Mar 29; 36(4):987-1006. PubMed ID: 37831412 [Abstract] [Full Text] [Related]
8. Characterization of OsPIP2;7, a water channel protein in rice. Li GW, Zhang MH, Cai WM, Sun WN, Su WA. Plant Cell Physiol; 2008 Dec 29; 49(12):1851-8. PubMed ID: 18988636 [Abstract] [Full Text] [Related]
9. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S. Plant Mol Biol; 2004 Jul 29; 55(4):541-52. PubMed ID: 15604699 [Abstract] [Full Text] [Related]
10. Cold stress-induced acclimation in rice is mediated by root-specific aquaporins. Ahamed A, Murai-Hatano M, Ishikawa-Sakurai J, Hayashi H, Kawamura Y, Uemura M. Plant Cell Physiol; 2012 Aug 29; 53(8):1445-56. PubMed ID: 22711693 [Abstract] [Full Text] [Related]
11. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Chen Y, Zhou X, Chang S, Chu Z, Wang H, Han S, Wang Y. Biochem Biophys Res Commun; 2017 Dec 02; 493(4):1450-1456. PubMed ID: 28988107 [Abstract] [Full Text] [Related]
12. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK. Mol Genet Genomics; 2007 Nov 02; 278(5):493-505. PubMed ID: 17636330 [Abstract] [Full Text] [Related]
13. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Plant J; 2000 Aug 02; 23(3):319-27. PubMed ID: 10929125 [Abstract] [Full Text] [Related]
14. ZmCPK1, a calcium-independent kinase member of the Zea mays CDPK gene family, functions as a negative regulator in cold stress signalling. Weckwerth P, Ehlert B, Romeis T. Plant Cell Environ; 2015 Mar 02; 38(3):544-58. PubMed ID: 25052912 [Abstract] [Full Text] [Related]
15. Phosphoproteomic Profiling Reveals the Importance of CK2, MAPKs and CDPKs in Response to Phosphate Starvation in Rice. Yang J, Xie MY, Yang XL, Liu BH, Lin HH. Plant Cell Physiol; 2019 Dec 01; 60(12):2785-2796. PubMed ID: 31424513 [Abstract] [Full Text] [Related]
16. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment. Lian HL, Yu X, Lane D, Sun WN, Tang ZC, Su WA. Cell Res; 2006 Jul 01; 16(7):651-60. PubMed ID: 16773042 [Abstract] [Full Text] [Related]
17. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. Huang L, Hong Y, Zhang H, Li D, Song F. BMC Plant Biol; 2016 Sep 20; 16(1):203. PubMed ID: 27646344 [Abstract] [Full Text] [Related]
18. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). Grondin A, Mauleon R, Vadez V, Henry A. Plant Cell Environ; 2016 Feb 20; 39(2):347-65. PubMed ID: 26226878 [Abstract] [Full Text] [Related]
19. Stress-responsive gene RsICE1 from Raphanus sativus increases cold tolerance in rice. Man L, Xiang D, Wang L, Zhang W, Wang X, Qi G. Protoplasma; 2017 Mar 20; 254(2):945-956. PubMed ID: 27473592 [Abstract] [Full Text] [Related]
20. Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice (Oryza sativa). Yoon DH, Lee SS, Park HJ, Lyu JI, Chong WS, Liu JR, Kim BG, Ahn JC, Cho HS. J Exp Bot; 2016 Jan 20; 67(1):69-82. PubMed ID: 26453745 [Abstract] [Full Text] [Related] Page: [Next] [New Search]