These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 28103592
1. Influences of Various Peptide Linkers on the Thermotoga maritima MSB8 Nitrilase Displayed on the Spore Surface of Bacillus subtilis. Chen H, Chen Z, Wu B, Ullah J, Zhang T, Jia J, Wang H, Tan T. J Mol Microbiol Biotechnol; 2017; 27(1):64-71. PubMed ID: 28103592 [Abstract] [Full Text] [Related]
2. Impact of orientation and flexibility of peptide linkers on T. maritima lipase Tm1350 displayed on Bacillus subtilis spores surface using CotB as fusion partner. Ullah J, Chen H, Vastermark A, Jia J, Wu B, Ni Z, Le Y, Wang H. World J Microbiol Biotechnol; 2017 Aug 18; 33(9):166. PubMed ID: 28822027 [Abstract] [Full Text] [Related]
3. Production of Cyanocarboxylic Acid by Acidovorax facilis 72W Nitrilase Displayed on the Spore Surface of Bacillus subtilis. Zhong X, Yang S, Su X, Shen X, Zhao W, Chan Z. J Microbiol Biotechnol; 2019 May 28; 29(5):749-757. PubMed ID: 30955259 [Abstract] [Full Text] [Related]
4. Effect of Linker Length and Flexibility on the Clostridium thermocellum Esterase Displayed on Bacillus subtilis Spores. Chen H, Wu B, Zhang T, Jia J, Lu J, Chen Z, Ni Z, Tan T. Appl Biochem Biotechnol; 2017 May 28; 182(1):168-180. PubMed ID: 27933482 [Abstract] [Full Text] [Related]
5. Clostridium thermocellum Nitrilase Expression and Surface Display on Bacillus subtilis Spores. Chen H, Zhang T, Sun T, Ni Z, Le Y, Tian R, Chen Z, Zhang C. J Mol Microbiol Biotechnol; 2015 May 28; 25(6):381-7. PubMed ID: 26629931 [Abstract] [Full Text] [Related]
6. Surface display of the thermophilic lipase Tm1350 on the spore of Bacillus subtilis by the CotB anchor protein. Chen H, Tian R, Ni Z, Zhang Q, Zhang T, Chen Z, Chen K, Yang S. Extremophiles; 2015 Jul 28; 19(4):799-808. PubMed ID: 26026992 [Abstract] [Full Text] [Related]
7. Display of Escherichia coli Phytase on the Surface of Bacillus subtilis Spore Using CotG as an Anchor Protein. Mingmongkolchai S, Panbangred W. Appl Biochem Biotechnol; 2019 Mar 28; 187(3):838-855. PubMed ID: 30088242 [Abstract] [Full Text] [Related]
8. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein. Hosseini-Abari A, Kim BG, Lee SH, Emtiazi G, Kim W, Kim JH. J Basic Microbiol; 2016 Dec 28; 56(12):1331-1337. PubMed ID: 27281458 [Abstract] [Full Text] [Related]
9. Expression and Characterization of a Novel Nitrilase from Hyperthermophilic Bacterium Thermotoga maritima MSB8. Chen Z, Chen H, Ni Z, Tian R, Zhang T, Jia J, Yang S. J Microbiol Biotechnol; 2015 Oct 28; 25(10):1660-9. PubMed ID: 26059515 [Abstract] [Full Text] [Related]
10. Production of trehalose with trehalose synthase expressed and displayed on the surface of Bacillus subtilis spores. Liu H, Yang S, Wang X, Wang T. Microb Cell Fact; 2019 Jun 03; 18(1):100. PubMed ID: 31159804 [Abstract] [Full Text] [Related]
11. Bacillus subtilis Spore Surface Display of Haloalkane Dehalogenase DhaA. Wang F, Song T, Jiang H, Pei C, Huang Q, Xi H. Curr Microbiol; 2019 Oct 03; 76(10):1161-1167. PubMed ID: 31278426 [Abstract] [Full Text] [Related]
12. Bifunctional enhancement of a beta-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Lu P, Feng MG. Appl Microbiol Biotechnol; 2008 Jun 03; 79(4):579-87. PubMed ID: 18415095 [Abstract] [Full Text] [Related]
13. Decolorization of Acid Green 25 by Surface Display of CotA laccase on Bacillus subtilis spores. Park JH, Kim W, Lee YS, Kim JH. J Microbiol Biotechnol; 2019 Sep 28; 29(9):1383-1390. PubMed ID: 31434174 [Abstract] [Full Text] [Related]
14. Bacterial surface display of a co-factor containing enzyme, ω-transaminase from Vibrio fluvialis using the Bacillus subtilis spore display system. Hwang BY, Kim BG, Kim JH. Biosci Biotechnol Biochem; 2011 Sep 28; 75(9):1862-5. PubMed ID: 21897008 [Abstract] [Full Text] [Related]
15. The flexible linker and CotG were more effective for the spore surface display of keratinase KERQ7. Wang Z, Yan M, Saeed M, Li K, Chen Y, Okoye CO, Fang Z, Ni Z, Chen H. World J Microbiol Biotechnol; 2023 Dec 07; 40(1):35. PubMed ID: 38057620 [Abstract] [Full Text] [Related]
16. Bacillus subtilis Spore Surface Display Technology: A Review of Its Development and Applications. Guoyan Z, Yingfeng A, Zabed H, Qi G, Yang M, Jiao Y, Li W, Wenjing S, Xianghui Q. J Microbiol Biotechnol; 2019 Feb 28; 29(2):179-190. PubMed ID: 30602268 [Abstract] [Full Text] [Related]
17. A system of vectors for Bacillus subtilis spore surface display. Iwanicki A, Piątek I, Stasiłojć M, Grela A, Lęga T, Obuchowski M, Hinc K. Microb Cell Fact; 2014 Feb 24; 13(1):30. PubMed ID: 24568122 [Abstract] [Full Text] [Related]
18. Engineering a family 27 carbohydrate-binding module into an Aspergillus usamii β-mannanase to perfect its enzymatic properties. Li J, Wang C, Hu D, Yuan F, Li X, Tang S, Wu M. J Biosci Bioeng; 2017 Mar 24; 123(3):294-299. PubMed ID: 27773606 [Abstract] [Full Text] [Related]
19. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores. Gupta N, Farinas ET. Protein Eng Des Sel; 2010 Aug 24; 23(8):679-82. PubMed ID: 20551082 [Abstract] [Full Text] [Related]
20. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Cho EA, Seo J, Lee DW, Pan JG. Enzyme Microb Technol; 2011 Jun 10; 49(1):100-4. PubMed ID: 22112278 [Abstract] [Full Text] [Related] Page: [Next] [New Search]