These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


308 related items for PubMed ID: 28107205

  • 21. Energy expenditure prediction in preschool children: a machine learning approach using accelerometry and external validation.
    Coyle-Asbil HJ, Burk L, Brandes M, Brandes B, Buck C, Wright MN, Vallis LA.
    Physiol Meas; 2024 Sep 26; 45(9):. PubMed ID: 39270714
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.
    Learmonth YC, Kinnett-Hopkins D, Rice IM, Dysterheft JL, Motl RW.
    Spinal Cord; 2016 Feb 26; 54(2):110-4. PubMed ID: 25777327
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Laboratory-based and free-living algorithms for energy expenditure estimation in preschool children: A free-living evaluation.
    Ahmadi MN, Chowdhury A, Pavey T, Trost SG.
    PLoS One; 2020 Feb 26; 15(5):e0233229. PubMed ID: 32433717
    [Abstract] [Full Text] [Related]

  • 30. Accelerometry calibration in people with class II-III obesity: Energy expenditure prediction and physical activity intensity identification.
    Diniz-Sousa F, Veras L, Ribeiro JC, Boppre G, Devezas V, Santos-Sousa H, Preto J, Machado L, Vilas-Boas JP, Oliveira J, Fonseca H.
    Gait Posture; 2020 Feb 26; 76():104-109. PubMed ID: 31756665
    [Abstract] [Full Text] [Related]

  • 31. Influence of Accelerometer Placement and/or Heart Rate on Energy Expenditure Prediction during Uphill Exercise.
    Kuo TBJ, Li JY, Chen CY, Lin YC, Tsai MW, Lin SP, Yang CCH.
    J Mot Behav; 2018 Feb 26; 50(2):127-133. PubMed ID: 28850303
    [Abstract] [Full Text] [Related]

  • 32. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations.
    Lyden K, Kozey SL, Staudenmeyer JW, Freedson PS.
    Eur J Appl Physiol; 2011 Feb 26; 111(2):187-201. PubMed ID: 20842375
    [Abstract] [Full Text] [Related]

  • 33. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N, Browning RC, Sazonov E.
    Med Sci Sports Exerc; 2011 Jul 26; 43(7):1312-21. PubMed ID: 21131868
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled water study.
    White T, Westgate K, Hollidge S, Venables M, Olivier P, Wareham N, Brage S.
    Int J Obes (Lond); 2019 Nov 26; 43(11):2333-2342. PubMed ID: 30940917
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Wrist-Worn Accelerometer-Brand Independent Posture Classification.
    Rowlands AV, Yates T, Olds TS, Davies M, Khunti K, Edwardson CL.
    Med Sci Sports Exerc; 2016 Apr 26; 48(4):748-54. PubMed ID: 26559451
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.