These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
348 related items for PubMed ID: 28114825
1. The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7-aminopyrazolo[4,3-d]pyrimidine core in affecting adenosine A1 and A2A receptor affinity and selectivity profiles. Squarcialupi L, Betti M, Catarzi D, Varano F, Falsini M, Ravani A, Pasquini S, Vincenzi F, Salmaso V, Sturlese M, Varani K, Moro S, Colotta V. J Enzyme Inhib Med Chem; 2017 Dec; 32(1):248-263. PubMed ID: 28114825 [Abstract] [Full Text] [Related]
2. 7-Amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives: structural investigations at the 5-position to target human A₁ and A(2A) adenosine receptors. Molecular modeling and pharmacological studies. Squarcialupi L, Colotta V, Catarzi D, Varano F, Betti M, Varani K, Vincenzi F, Borea PA, Porta N, Ciancetta A, Moro S. Eur J Med Chem; 2014 Sep 12; 84():614-27. PubMed ID: 25063944 [Abstract] [Full Text] [Related]
4. 5-Substituted 2-benzylidene-1-tetralone analogues as A1 and/or A2A antagonists for the potential treatment of neurological conditions. Janse van Rensburg HD, Terre'Blanche G, van der Walt MM, Legoabe LJ. Bioorg Chem; 2017 Oct 12; 74():251-259. PubMed ID: 28881253 [Abstract] [Full Text] [Related]
7. Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A1 and A2A adenosine receptor antagonists/inverse agonists. Varano F, Catarzi D, Falsini M, Vincenzi F, Pasquini S, Varani K, Colotta V. Bioorg Med Chem; 2018 Jul 23; 26(12):3688-3695. PubMed ID: 29880250 [Abstract] [Full Text] [Related]
8. Discovery of 1,3-diethyl-7-methyl-8-(phenoxymethyl)-xanthine derivatives as novel adenosine A1 and A2A receptor antagonists. Harmse R, van der Walt MM, Petzer JP, Terre'Blanche G. Bioorg Med Chem Lett; 2016 Dec 15; 26(24):5951-5955. PubMed ID: 27836398 [Abstract] [Full Text] [Related]
9. Synthesis and evaluation of methoxy substituted 2-benzoyl-1-benzofuran derivatives as lead compounds for the development adenosine A1 and/or A2A receptor antagonists. Janse van Rensburg HD, Legoabe LJ, Terre'Blanche G, Aucamp J. Bioorg Chem; 2020 Jan 15; 94():103459. PubMed ID: 31818481 [Abstract] [Full Text] [Related]
10. Synthesis and evaluation of N-substituted 2-amino-4,5-diarylpyrimidines as selective adenosine A1 receptor antagonists. Alachouzos G, Lenselink EB, Mulder-Krieger T, de Vries H, IJzerman AP, Louvel J. Eur J Med Chem; 2017 Jan 05; 125():586-602. PubMed ID: 27718474 [Abstract] [Full Text] [Related]
11. Development of novel pyridazinone-based adenosine receptor ligands. Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, Pasquini S, Dal Ben D, Colotta V. Bioorg Med Chem Lett; 2018 May 15; 28(9):1484-1489. PubMed ID: 29627261 [Abstract] [Full Text] [Related]
12. Novel 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-one derivatives as potent human adenosine A1 and A2A receptor antagonists. Evaluation of their protective effect against β-amyloid-induced neurotoxicity in SH-SY5Y cells. Falsini M, Catarzi D, Varano F, Dal Ben D, Marucci G, Buccioni M, Volpini R, Di Cesare Mannelli L, Ghelardini C, Colotta V. Bioorg Chem; 2019 Jun 15; 87():380-394. PubMed ID: 30913470 [Abstract] [Full Text] [Related]
13. JNJ-40255293, a novel adenosine A2A/A1 antagonist with efficacy in preclinical models of Parkinson's disease. Atack JR, Shook BC, Rassnick S, Jackson PF, Rhodes K, Drinkenburg WH, Ahnaou A, Te Riele P, Langlois X, Hrupka B, De Haes P, Hendrickx H, Aerts N, Hens K, Wellens A, Vermeire J, Megens AA. ACS Chem Neurosci; 2014 Oct 15; 5(10):1005-19. PubMed ID: 25203719 [Abstract] [Full Text] [Related]
14. Carbamate substituted 2-amino-4,6-diphenylpyrimidines as adenosine receptor antagonists. Robinson SJ, Petzer JP, Rousseau AL, Terre'Blanche G, Petzer A, Lourens ACU. Bioorg Med Chem Lett; 2016 Feb 01; 26(3):734-738. PubMed ID: 26776359 [Abstract] [Full Text] [Related]
15. Scaffold decoration at positions 5 and 8 of 1,2,4-triazolo[1,5-c]pyrimidines to explore the antagonist profiling on adenosine receptors: a preliminary structure-activity relationship study. Federico S, Ciancetta A, Porta N, Redenti S, Pastorin G, Cacciari B, Klotz KN, Moro S, Spalluto G. J Med Chem; 2014 Jul 24; 57(14):6210-25. PubMed ID: 24972108 [Abstract] [Full Text] [Related]
16. 2-Benzylidene-1-Indanone Analogues as Dual Adenosine A1/A2a Receptor Antagonists for the Potential Treatment of Neurological Conditions. van Rensburg HJ, Legoabe L, Terre'Blanche G, Van der Walt M. Drug Res (Stuttg); 2019 Jul 24; 69(7):382-391. PubMed ID: 30616250 [Abstract] [Full Text] [Related]
17. Evaluation of 2-benzylidene-1-tetralone derivatives as antagonists of A1 and A2A adenosine receptors. Legoabe LJ, Van der Walt MM, Terre'Blanche G. Chem Biol Drug Des; 2018 Jan 24; 91(1):234-244. PubMed ID: 28734058 [Abstract] [Full Text] [Related]
18. The 1,2,4-Triazolo[4,3-a]pyrazin-3-one as a Versatile Scaffold for the Design of Potent Adenosine Human Receptor Antagonists. Structural Investigations to Target the A2A Receptor Subtype. Falsini M, Squarcialupi L, Catarzi D, Varano F, Betti M, Dal Ben D, Marucci G, Buccioni M, Volpini R, De Vita T, Cavalli A, Colotta V. J Med Chem; 2017 Jul 13; 60(13):5772-5790. PubMed ID: 28590753 [Abstract] [Full Text] [Related]
19. Targeting adenosine receptors with coumarins: synthesis and binding activities of amide and carbamate derivatives. Matos MJ, Gaspar A, Kachler S, Klotz KN, Borges F, Santana L, Uriarte E. J Pharm Pharmacol; 2013 Jan 13; 65(1):30-4. PubMed ID: 23215685 [Abstract] [Full Text] [Related]
20. Synthesis and Structure Activity Relationships of Chalcone based Benzocycloalkanone Derivatives as Adenosine A1 and/or A2A Receptor Antagonists. Janse van Rensburg HD, Legoabe LJ, Terre'Blanche G. Drug Res (Stuttg); 2020 Jun 13; 70(6):243-256. PubMed ID: 32349128 [Abstract] [Full Text] [Related] Page: [Next] [New Search]