These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 28117920

  • 1. Coupling Activity-Based Detection, Target Amplification, Colorimetric and Fluorometric Signal Amplification, for Quantitative Chemosensing of Fluoride Generated from Nerve Agents.
    Sun X, Reuther JF, Phillips ST, Anslyn EV.
    Chemistry; 2017 Mar 17; 23(16):3903-3909. PubMed ID: 28117920
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a boron dipyrromethene (BODIPY) dye.
    Barba-Bon A, Costero AM, Gil S, Martínez-Máñez R, Sancenón F.
    Org Biomol Chem; 2014 Nov 21; 12(43):8745-51. PubMed ID: 25260024
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Efficient colorimetric and fluorescent detection of fluoride in DMSO-water mixtures with arylaldoximes.
    Rosen CB, Hansen DJ, Gothelf KV.
    Org Biomol Chem; 2013 Dec 07; 11(45):7916-22. PubMed ID: 24132123
    [Abstract] [Full Text] [Related]

  • 7. Catalyzed hydrolysis of nerve gases by metal chelate compounds and potentiometric detection of the byproducts.
    Xie Y, Popov BN.
    Anal Chem; 2000 May 01; 72(9):2075-9. PubMed ID: 10815968
    [Abstract] [Full Text] [Related]

  • 8. A small molecule sensor for fluoride based on an autoinductive, colorimetric signal amplification reaction.
    Baker MS, Phillips ST.
    Org Biomol Chem; 2012 May 14; 10(18):3595-9. PubMed ID: 22456897
    [Abstract] [Full Text] [Related]

  • 9. Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors.
    Zhang SW, Swager TM.
    J Am Chem Soc; 2003 Mar 26; 125(12):3420-1. PubMed ID: 12643690
    [Abstract] [Full Text] [Related]

  • 10. Improving Quantification of tabun, sarin, soman, cyclosarin, and sulfur mustard by focusing agents: A field portable gas chromatography-mass spectrometry study.
    Kelly JT, Qualley A, Hughes GT, Rubenstein MH, Malloy TA, Piatkowski T.
    J Chromatogr A; 2021 Jan 11; 1636():461784. PubMed ID: 33360649
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Monitoring the hydrolysis of toxic organophosphonate nerve agents in aqueous buffer and in bicontinuous microemulsions by use of diisopropyl fluorophosphatase (DFPase) with (1)H- (31)P HSQC NMR spectroscopy.
    Gäb J, Melzer M, Kehe K, Wellert S, Hellweg T, Blum MM.
    Anal Bioanal Chem; 2010 Feb 11; 396(3):1213-21. PubMed ID: 19943158
    [Abstract] [Full Text] [Related]

  • 14. A cyclization-induced emission enhancement (CIEE)-based ratiometric fluorogenic and chromogenic probe for the facile detection of a nerve agent simulant DCP.
    Mahapatra AK, Maiti K, Manna SK, Maji R, Mondal S, Das Mukhopadhyay C, Sahoo P, Mandal D.
    Chem Commun (Camb); 2015 Jun 14; 51(47):9729-32. PubMed ID: 25980383
    [Abstract] [Full Text] [Related]

  • 15. Highly selective and sensitive chromogenic detection of nerve agents (sarin, tabun and VX): a multianalyte detection approach.
    Kumar V, Raviraju G, Rana H, Rao VK, Gupta AK.
    Chem Commun (Camb); 2017 Nov 30; 53(96):12954-12957. PubMed ID: 29159359
    [Abstract] [Full Text] [Related]

  • 16. Methylation protocol for the retrospective detection of isopropyl-, pinacolyl- and cyclohexylmethylphosphonic acids, indicative markers for the nerve agents sarin, soman and cyclosarin, at low levels in soils using EI-GC-MS.
    Valdez CA, Leif RN, Hok S, Vu AK, Salazar EP, Alcaraz A.
    Sci Total Environ; 2019 Sep 15; 683():175-184. PubMed ID: 31146057
    [Abstract] [Full Text] [Related]

  • 17. Revisiting the reactivity of oximate alpha-nucleophiles with electrophilic phosphorus centers. Relevance to detoxification of sarin, soman and DFP under mild conditions.
    Terrier F, Rodriguez-Dafonte P, Le Guével E, Moutiers G.
    Org Biomol Chem; 2006 Dec 07; 4(23):4352-63. PubMed ID: 17102881
    [Abstract] [Full Text] [Related]

  • 18. Hydroxy oximes as organophosphorus nerve agent sensors.
    Dale TJ, Rebek J.
    Angew Chem Int Ed Engl; 2009 Dec 07; 48(42):7850-2. PubMed ID: 19757467
    [No Abstract] [Full Text] [Related]

  • 19. Capillary gas chromatographic analysis of nerve agents using large volume injections.
    Degenhardt-Langelaan CE, Kientz CE.
    J Chromatogr A; 1996 Feb 02; 723(1):210-4. PubMed ID: 8819827
    [Abstract] [Full Text] [Related]

  • 20. Aminobenzohydrazide based colorimetric and 'turn-on' fluorescence chemosensor for selective recognition of fluoride.
    Anand T, Sivaraman G, Iniya M, Siva A, Chellappa D.
    Anal Chim Acta; 2015 May 30; 876():1-8. PubMed ID: 25998453
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.