These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 28118222

  • 1. Maintenance and regulation of asymmetric phospholipid distribution in human erythrocyte membranes: implications for erythrocyte functions.
    Arashiki N, Takakuwa Y.
    Curr Opin Hematol; 2017 May; 24(3):167-172. PubMed ID: 28118222
    [Abstract] [Full Text] [Related]

  • 2. An Unrecognized Function of Cholesterol: Regulating the Mechanism Controlling Membrane Phospholipid Asymmetry.
    Arashiki N, Saito M, Koshino I, Kamata K, Hale J, Mohandas N, Manno S, Takakuwa Y.
    Biochemistry; 2016 Jun 28; 55(25):3504-3513. PubMed ID: 27267274
    [Abstract] [Full Text] [Related]

  • 3. ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia.
    Arashiki N, Takakuwa Y, Mohandas N, Hale J, Yoshida K, Ogura H, Utsugisawa T, Ohga S, Miyano S, Ogawa S, Kojima S, Kanno H.
    Haematologica; 2016 May 28; 101(5):559-65. PubMed ID: 26944472
    [Abstract] [Full Text] [Related]

  • 4. Reduction in flippase activity contributes to surface presentation of phosphatidylserine in human senescent erythrocytes.
    Seki M, Arashiki N, Takakuwa Y, Nitta K, Nakamura F.
    J Cell Mol Med; 2020 Dec 28; 24(23):13991-14000. PubMed ID: 33103382
    [Abstract] [Full Text] [Related]

  • 5. ATP11C T418N, a gene mutation causing congenital hemolytic anemia, reduces flippase activity due to improper membrane trafficking.
    Arashiki N, Niitsuma K, Seki M, Takakuwa Y, Nakamura F.
    Biochem Biophys Res Commun; 2019 Aug 27; 516(3):705-712. PubMed ID: 31253392
    [Abstract] [Full Text] [Related]

  • 6. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure.
    van Zwieten R, Bochem AE, Hilarius PM, van Bruggen R, Bergkamp F, Hovingh GK, Verhoeven AJ.
    Biochim Biophys Acta; 2012 Dec 27; 1821(12):1493-500. PubMed ID: 22960544
    [Abstract] [Full Text] [Related]

  • 7. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells.
    Liou AY, Molday LL, Wang J, Andersen JP, Molday RS.
    J Biol Chem; 2019 Apr 26; 294(17):6809-6821. PubMed ID: 30850395
    [Abstract] [Full Text] [Related]

  • 8. A novel missense variant in ATP11C is associated with reduced red blood cell phosphatidylserine flippase activity and mild hereditary hemolytic anemia.
    van Dijk MJ, van Oirschot BA, Harrison AN, Recktenwald SM, Qiao M, Stommen A, Cloos AS, Vanderroost J, Terrasi R, Dey K, Bos J, Rab MAE, Bogdanova A, Minetti G, Muccioli GG, Tyteca D, Egée S, Kaestner L, Molday RS, van Beers EJ, van Wijk R.
    Am J Hematol; 2023 Dec 26; 98(12):1877-1887. PubMed ID: 37671681
    [Abstract] [Full Text] [Related]

  • 9. Direct inhibition of phospholipid scrambling activity in erythrocytes by potassium ions.
    Wolfs JL, Comfurius P, Bekers O, Zwaal RF, Balasubramanian K, Schroit AJ, Lindhout T, Bevers EM.
    Cell Mol Life Sci; 2009 Jan 26; 66(2):314-23. PubMed ID: 18989619
    [Abstract] [Full Text] [Related]

  • 10. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic.
    Tadini-Buoninsegni F, Mikkelsen SA, Mogensen LS, Molday RS, Andersen JP.
    Proc Natl Acad Sci U S A; 2019 Aug 13; 116(33):16332-16337. PubMed ID: 31371510
    [Abstract] [Full Text] [Related]

  • 11. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.
    Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S.
    Science; 2014 Jun 06; 344(6188):1164-8. PubMed ID: 24904167
    [Abstract] [Full Text] [Related]

  • 12. The ratio of ATP11C/PLSCR1 mRNA transcripts has clinical significance in sickle cell anemia.
    Pereira-Martins DA, Coelho-Silva JL, Domingos IF, Weinhäuser I, Franca-Neto PL, Araujo AS, Franca RF, Bezerra MA, Lucena-Araujo AR.
    Ann Hematol; 2022 Feb 06; 101(2):281-287. PubMed ID: 34651249
    [Abstract] [Full Text] [Related]

  • 13. Inhibition and stimulation of phospholipid scrambling activity. Consequences for lipid asymmetry, echinocytosis, and microvesiculation of erythrocytes.
    Kamp D, Sieberg T, Haest CW.
    Biochemistry; 2001 Aug 07; 40(31):9438-46. PubMed ID: 11478914
    [Abstract] [Full Text] [Related]

  • 14. Scrambling of phospholipids activates red cell membrane cholesterol.
    Lange Y, Ye J, Steck TL.
    Biochemistry; 2007 Feb 27; 46(8):2233-8. PubMed ID: 17269796
    [Abstract] [Full Text] [Related]

  • 15. ATP-dependent transport of phosphatidylserine analogues in human erythrocytes.
    Smriti, Nemergut EC, Daleke DL.
    Biochemistry; 2007 Feb 27; 46(8):2249-59. PubMed ID: 17269657
    [Abstract] [Full Text] [Related]

  • 16. Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span.
    Yabas M, Coupland LA, Cromer D, Winterberg M, Teoh NC, D'Rozario J, Kirk K, Bröer S, Parish CR, Enders A.
    J Biol Chem; 2014 Jul 11; 289(28):19531-7. PubMed ID: 24898253
    [Abstract] [Full Text] [Related]

  • 17. Bilirubin induces loss of membrane lipids and exposure of phosphatidylserine in human erythrocytes.
    Brito MA, Silva RF, Brites D.
    Cell Biol Toxicol; 2002 Jul 11; 18(3):181-92. PubMed ID: 12083424
    [Abstract] [Full Text] [Related]

  • 18. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.
    Segawa K, Kurata S, Nagata S.
    J Biol Chem; 2018 Feb 09; 293(6):2172-2182. PubMed ID: 29276178
    [Abstract] [Full Text] [Related]

  • 19. Impaired Ca2+-induced tyrosine phosphorylation and defective lipid scrambling in erythrocytes from a patient with Scott syndrome: a study using an inhibitor for scramblase that mimics the defect in Scott syndrome.
    Dekkers DW, Comfurius P, Vuist WM, Billheimer JT, Dicker I, Weiss HJ, Zwaal RF, Bevers EM.
    Blood; 1998 Mar 15; 91(6):2133-8. PubMed ID: 9490700
    [Abstract] [Full Text] [Related]

  • 20. Control of the transmembrane phospholipid distribution in eukaryotic cells by aminophospholipid translocase.
    Devaux PF, Zachowski A, Morrot G, Cribier S, Fellmann P, Geldwerth D, Bitbol M, Herve P.
    Biotechnol Appl Biochem; 1990 Oct 15; 12(5):517-22. PubMed ID: 2288706
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.