These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


390 related items for PubMed ID: 28125380

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.
    Bittner SM, Smith BT, Diaz-Gomez L, Hudgins CD, Melchiorri AJ, Scott DW, Fisher JP, Mikos AG.
    Acta Biomater; 2019 May; 90():37-48. PubMed ID: 30905862
    [Abstract] [Full Text] [Related]

  • 3. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S, Karami-Pour A, Oryan A, Talaei-Khozani T.
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology.
    Lee JW, Lan PX, Kim B, Lim G, Cho DW.
    J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):1-9. PubMed ID: 18335437
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Optimization of photocrosslinkable resin components and 3D printing process parameters.
    Guerra AJ, Lammel-Lindemann J, Katko A, Kleinfehn A, Rodriguez CA, Catalani LH, Becker ML, Ciurana J, Dean D.
    Acta Biomater; 2019 Oct 01; 97():154-161. PubMed ID: 31352105
    [Abstract] [Full Text] [Related]

  • 11. Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering.
    Ahn CB, Kim Y, Park SJ, Hwang Y, Lee JW.
    J Biomater Sci Polym Ed; 2018 Oct 01; 29(7-9):917-931. PubMed ID: 28929935
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering.
    Kim H, Hwangbo H, Koo Y, Kim G.
    Int J Mol Sci; 2020 May 11; 21(9):. PubMed ID: 32403422
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding.
    Lee KW, Wang S, Lu L, Jabbari E, Currier BL, Yaszemski MJ.
    Tissue Eng; 2006 Oct 11; 12(10):2801-11. PubMed ID: 17518649
    [Abstract] [Full Text] [Related]

  • 20. Three-dimensional porous poly(propylene fumarate)-co-poly(lactic-co-glycolic acid) scaffolds for tissue engineering.
    Wu W, Liu X, Zhou Z, Miller AL, Lu L.
    J Biomed Mater Res A; 2018 Sep 11; 106(9):2507-2517. PubMed ID: 29707898
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.