These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Genetic Variants at the Nebulette Locus Are Associated with Myxomatous Mitral Valve Disease Severity in Cavalier King Charles Spaniels. Mead SE, Beijerink NJ, O'Brien M, Wade CM. Genes (Basel); 2022 Dec 05; 13(12):. PubMed ID: 36553559 [Abstract] [Full Text] [Related]
24. Identification of 2 loci associated with development of myxomatous mitral valve disease in Cavalier King Charles Spaniels. Madsen MB, Olsen LH, Häggström J, Höglund K, Ljungvall I, Falk T, Wess G, Stephenson H, Dukes-McEwan J, Chetboul V, Gouni V, Proschowsky HF, Cirera S, Karlskov-Mortensen P, Fredholm M. J Hered; 2011 Dec 05; 102 Suppl 1():S62-7. PubMed ID: 21846748 [Abstract] [Full Text] [Related]
25. R-R interval variations influence the degree of mitral regurgitation in dogs with myxomatous mitral valve disease. Reimann MJ, Møller JE, Häggström J, Markussen B, Holen AE, Falk T, Olsen LH. Vet J; 2014 Mar 05; 199(3):348-54. PubMed ID: 24507881 [Abstract] [Full Text] [Related]
26. Assessment of changes in hemostatic markers in Cavalier King Charles Spaniels with myxomatous mitral valve disease. Tarnow I, Kristensen AT, Olsen LH, Pedersen HD. Am J Vet Res; 2004 Dec 05; 65(12):1644-52. PubMed ID: 15631028 [Abstract] [Full Text] [Related]
27. Evaluation of plasma and urinary levels of 6-keto-prostaglandin F1alpha as a marker for asymptomatic myxomatous mitral valve disease in dogs. Rasmussen CE, Sundqvist AV, Kjempff CT, Tarnow I, Kjelgaard-Hansen M, Kamstrup TS, Sterup AL, Soerensen TM, Olsen LH. Vet J; 2010 May 05; 184(2):241-6. PubMed ID: 19324577 [Abstract] [Full Text] [Related]
28. Flow-mediated vasodilation measurements in Cavalier King Charles Spaniels with increasing severity of myxomatous mitral valve disease. Moesgaard SG, Klostergaard C, Zois NE, Teerlink T, Molin M, Falk T, Rasmussen CE, Luis Fuentes V, Jones ID, Olsen LH. J Vet Intern Med; 2012 May 05; 26(1):61-8. PubMed ID: 22151409 [Abstract] [Full Text] [Related]
29. Proteomics reveals plasma protein SERPINH1 as a potential diagnostic biomarkers for myxomatous mitral valve disease stage B2. Zhou Q, Wu Z, Li L, Zhou H, Chen Y, Guo S, Guo Y, Ma X, Zhang J, Feng W, Cui X, Qiu C, Xu M, Deng G. J Proteomics; 2023 Jun 30; 282():104924. PubMed ID: 37146676 [Abstract] [Full Text] [Related]
30. Severity of myxomatous mitral valve disease in dogs may be predicted using neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratio. Ku D, Chae Y, Kim C, Koo Y, Lee D, Yun T, Chang D, Kang BT, Yang MP, Kim H. Am J Vet Res; 2023 Jun 01; 84(6):. PubMed ID: 37024099 [Abstract] [Full Text] [Related]
31. Myxomatous mitral valve disease and associated pulmonary hypertension might increase serum angiopoietin-2 in dogs. Yu H, Lee D, Chae Y, Choi M, Lee Y, Yun T, Kang BT, Yang MP, Kim H. Am J Vet Res; 2024 Jun 01; 85(6):. PubMed ID: 38531156 [Abstract] [Full Text] [Related]
32. Genetics of canine myxomatous mitral valve disease. O'Brien MJ, Beijerink NJ, Wade CM. Anim Genet; 2021 Aug 01; 52(4):409-421. PubMed ID: 34028063 [Abstract] [Full Text] [Related]
33. Dietary intervention reduces left atrial enlargement in dogs with early preclinical myxomatous mitral valve disease: a blinded randomized controlled study in 36 dogs. Li Q, Heaney A, Langenfeld-McCoy N, Boler BV, Laflamme DP. BMC Vet Res; 2019 Nov 27; 15(1):425. PubMed ID: 31775756 [Abstract] [Full Text] [Related]
34. Use of physical examination, electrocardiography, radiography, and biomarkers to predict echocardiographic stage B2 myxomatous mitral valve disease in preclinical Cavalier King Charles Spaniels. Wesselowski S, Gordon SG, Fries R, Saunders AB, Sykes KT, Vitt J, Boutet B, Häggström J, Kadotani S, Stack J, Barnett BG. J Vet Cardiol; 2023 Dec 27; 50():1-16. PubMed ID: 37913604 [Abstract] [Full Text] [Related]
35. Genome-wide sequencing and quantification of circulating microRNAs for dogs with congestive heart failure secondary to myxomatous mitral valve degeneration. Jung S, Bohan A. Am J Vet Res; 2018 Feb 27; 79(2):163-169. PubMed ID: 29359980 [Abstract] [Full Text] [Related]
36. Short-term hemodynamic and neuroendocrine effects of pimobendan and benazapril in dogs with myxomatous mitral valve disease and congestive heart failure. Häggström J, Lord PF, Höglund K, Ljungvall I, Jöns O, Kvart C, Hansson K. J Vet Intern Med; 2013 Feb 27; 27(6):1452-62. PubMed ID: 24128373 [Abstract] [Full Text] [Related]
37. Left Atrial Strain at Different Stages of Myxomatous Mitral Valve Disease in Dogs. Nakamura K, Kawamoto S, Osuga T, Morita T, Sasaki N, Morishita K, Ohta H, Takiguchi M. J Vet Intern Med; 2017 Mar 27; 31(2):316-325. PubMed ID: 28145607 [Abstract] [Full Text] [Related]
38. Symmetric dimethylarginine in dogs with myxomatous mitral valve disease at various stages of disease severity. Valente C, Guglielmini C, Domenech O, Contiero B, Zini E, Poser H. PLoS One; 2020 Mar 27; 15(9):e0238440. PubMed ID: 32870923 [Abstract] [Full Text] [Related]
39. Markers of oxidative stress in dogs with heart failure. Verk B, Nemec Svete A, Salobir J, Rezar V, Domanjko Petrič A. J Vet Diagn Invest; 2017 Sep 27; 29(5):636-644. PubMed ID: 28580831 [Abstract] [Full Text] [Related]
40. Assessment of global and regional left ventricular volume and shape by real-time 3-dimensional echocardiography in dogs with myxomatous mitral valve disease. Ljungvall I, Höglund K, Carnabuci C, Tidholm A, Häggström J. J Vet Intern Med; 2011 Sep 27; 25(5):1036-43. PubMed ID: 21848946 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]