These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


142 related items for PubMed ID: 28133743

  • 1. Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer.
    Tardaguila J, Fernández-Novales J, Gutiérrez S, Diago MP.
    J Sci Food Agric; 2017 Aug; 97(11):3772-3780. PubMed ID: 28133743
    [Abstract] [Full Text] [Related]

  • 2. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.
    Gutiérrez S, Tardaguila J, Fernández-Novales J, Diago MP.
    PLoS One; 2015 Aug; 10(11):e0143197. PubMed ID: 26600316
    [Abstract] [Full Text] [Related]

  • 3. Potential effectiveness of visible and near infrared spectroscopy coupled with wavelength selection for real time grapevine leaf water status measurement.
    Giovenzana V, Beghi R, Parisi S, Brancadoro L, Guidetti R.
    J Sci Food Agric; 2018 Mar; 98(5):1935-1943. PubMed ID: 28914453
    [Abstract] [Full Text] [Related]

  • 4. Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions.
    Gutiérrez S, Tardaguila J, Fernández-Novales J, Diago MP.
    Sensors (Basel); 2016 Feb 16; 16(2):236. PubMed ID: 26891304
    [Abstract] [Full Text] [Related]

  • 5. Towards the automation of NIR spectroscopy to assess vineyard water status spatial-temporal variability from a ground moving vehicle.
    Fernández-Novales J, Barrio I, Diago MP.
    Sci Rep; 2023 Aug 17; 13(1):13362. PubMed ID: 37591887
    [Abstract] [Full Text] [Related]

  • 6. Portable NIR-AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in-field monitoring of Sangiovese grape quality.
    Barnaba FE, Bellincontro A, Mencarelli F.
    J Sci Food Agric; 2014 Apr 17; 94(6):1071-7. PubMed ID: 24037743
    [Abstract] [Full Text] [Related]

  • 7. Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy.
    Diago MP, Fernández-Novales J, Gutiérrez S, Marañón M, Tardaguila J.
    Front Plant Sci; 2018 Apr 17; 9():59. PubMed ID: 29441086
    [Abstract] [Full Text] [Related]

  • 8. Feasibility study on the use of a portable micro near infrared spectroscopy device for the "in vineyard" screening of extractable polyphenols in red grape skins.
    Baca-Bocanegra B, Hernández-Hierro JM, Nogales-Bueno J, Heredia FJ.
    Talanta; 2019 Jan 15; 192():353-359. PubMed ID: 30348402
    [Abstract] [Full Text] [Related]

  • 9. Fast and local assessment of stilbene content in grapevine leaf by in vivo fluorometry.
    Poutaraud A, Latouche G, Martins S, Meyer S, Merdinoglu D, Cerovic ZG.
    J Agric Food Chem; 2007 Jun 27; 55(13):4913-20. PubMed ID: 17542609
    [Abstract] [Full Text] [Related]

  • 10. Portable visible and near-infrared spectrophotometer for triglyceride measurements.
    Kobayashi T, Kato YH, Tsukamoto M, Ikuta K, Sakudo A.
    Int J Mol Med; 2009 Jan 27; 23(1):75-9. PubMed ID: 19082509
    [Abstract] [Full Text] [Related]

  • 11. A feasibility study on the use of visible and short wavelengths in the near-infrared region for the non-destructive measurement of wine composition.
    Cozzolino D, Kwiatkowski MJ, Waters EJ, Gishen M.
    Anal Bioanal Chem; 2007 Mar 27; 387(6):2289-95. PubMed ID: 17203262
    [Abstract] [Full Text] [Related]

  • 12. Field phenotyping of grapevine growth using dense stereo reconstruction.
    Klodt M, Herzog K, Töpfer R, Cremers D.
    BMC Bioinformatics; 2015 May 06; 16():143. PubMed ID: 25943369
    [Abstract] [Full Text] [Related]

  • 13. Near-infrared spectroscopy for the prediction of disease ratings for Fiji leaf gall in sugarcane clones.
    Purcell DE, O'Shea MG, Johnson RA, Kokot S.
    Appl Spectrosc; 2009 Apr 06; 63(4):450-7. PubMed ID: 19366512
    [Abstract] [Full Text] [Related]

  • 14. Rapid monitoring of grape withering using visible near-infrared spectroscopy.
    Beghi R, Giovenzana V, Marai S, Guidetti R.
    J Sci Food Agric; 2015 Dec 06; 95(15):3144-9. PubMed ID: 25523419
    [Abstract] [Full Text] [Related]

  • 15. Feasibility study on the use of near infrared spectroscopy to determine flavanols in grape seeds.
    Ferrer-Gallego R, Hernández-Hierro JM, Rivas-Gonzalo JC, Escribano-Bailón MT.
    Talanta; 2010 Oct 15; 82(5):1778-83. PubMed ID: 20875576
    [Abstract] [Full Text] [Related]

  • 16. Comparative quantification of chlorophyll and polyphenol levels in grapevine leaves sampled from different geographical locations.
    Martín-Tornero E, de Jorge Páscoa RNM, Espinosa-Mansilla A, Martín-Merás ID, Lopes JA.
    Sci Rep; 2020 Apr 10; 10(1):6246. PubMed ID: 32277161
    [Abstract] [Full Text] [Related]

  • 17. Estimation of Sugar Content in Wine Grapes via In Situ VNIR-SWIR Point Spectroscopy Using Explainable Artificial Intelligence Techniques.
    Kalopesa E, Karyotis K, Tziolas N, Tsakiridis N, Samarinas N, Zalidis G.
    Sensors (Basel); 2023 Jan 17; 23(3):. PubMed ID: 36772104
    [Abstract] [Full Text] [Related]

  • 18. Near infrared spectroscopy for prediction of antioxidant compounds in the honey.
    Escuredo O, Seijo MC, Salvador J, González-Martín MI.
    Food Chem; 2013 Dec 15; 141(4):3409-14. PubMed ID: 23993500
    [Abstract] [Full Text] [Related]

  • 19. On-The-Go Hyperspectral Imaging Under Field Conditions and Machine Learning for the Classification of Grapevine Varieties.
    Gutiérrez S, Fernández-Novales J, Diago MP, Tardaguila J.
    Front Plant Sci; 2018 Dec 15; 9():1102. PubMed ID: 30090110
    [Abstract] [Full Text] [Related]

  • 20. Near-infrared spectroscopy and X-ray fluorescence data fusion for olive leaf analysis and crop nutritional status determination.
    Comino F, Ayora-Cañada MJ, Aranda V, Díaz A, Domínguez-Vidal A.
    Talanta; 2018 Oct 01; 188():676-684. PubMed ID: 30029431
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.