These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Two separate regions of the extrachromosomal ribosomal deoxyribonucleic acid of Tetrahymena thermophila enable autonomous replication of plasmids in Saccharomyces cerevisiae. Kiss GB, Amin AA, Pearlman RE. Mol Cell Biol; 1981 Jun; 1(6):535-43. PubMed ID: 6765606 [Abstract] [Full Text] [Related]
6. Replication of an rRNA gene origin plasmid in the Tetrahymena thermophila macronucleus is prevented by transcription through the origin from an RNA polymerase I promoter. Pan WJ, Gallagher RC, Blackburn EH. Mol Cell Biol; 1995 Jun; 15(6):3372-81. PubMed ID: 7760833 [Abstract] [Full Text] [Related]
8. Regulatory sequences for the amplification and replication of the ribosomal DNA minichromosome in Tetrahymena thermophila. Blomberg P, Randolph C, Yao CH, Yao MC. Mol Cell Biol; 1997 Dec; 17(12):7237-47. PubMed ID: 9372956 [Abstract] [Full Text] [Related]
9. A restriction fragment length polymorphism in the 5' non-transcribed spacer of the rDNA of Tetrahymena thermophila inbred strains B and C3. Luehrsen KR, Baum MP, Orias E. Gene; 1987 Dec; 55(2-3):169-78. PubMed ID: 2889644 [Abstract] [Full Text] [Related]
11. High frequency vector-mediated transformation and gene replacement in Tetrahymena. Gaertig J, Gu L, Hai B, Gorovsky MA. Nucleic Acids Res; 1994 Dec 11; 22(24):5391-8. PubMed ID: 7816630 [Abstract] [Full Text] [Related]
12. Efficient mass transformation of Tetrahymena thermophila by electroporation of conjugants. Gaertig J, Gorovsky MA. Proc Natl Acad Sci U S A; 1992 Oct 01; 89(19):9196-200. PubMed ID: 1409625 [Abstract] [Full Text] [Related]
13. Transformation of Tetrahymena thermophila by microinjection of ribosomal RNA genes. Tondravi MM, Yao MC. Proc Natl Acad Sci U S A; 1986 Jun 01; 83(12):4369-73. PubMed ID: 3459180 [Abstract] [Full Text] [Related]
14. Autonomously replicating sequences from the non transcribed spacers of Tetrahymena thermophila ribosomal DNA. Amin AA, Pearlman RE. Nucleic Acids Res; 1985 Apr 11; 13(7):2647-59. PubMed ID: 2987861 [Abstract] [Full Text] [Related]
15. Common sequence elements are important for transcription and replication of the extrachromosomal rRNA-encoding genes of Tetrahymena. Miyahara K, Hashimoto N, Higashinakagawa T, Pearlman RE. Gene; 1993 May 30; 127(2):209-13. PubMed ID: 8500763 [Abstract] [Full Text] [Related]
16. Identifying functional regions of rRNA by insertion mutagenesis and complete gene replacement in Tetrahymena thermophila. Sweeney R, Yao MC. EMBO J; 1989 Mar 30; 8(3):933-8. PubMed ID: 2542027 [Abstract] [Full Text] [Related]
17. Long range cooperative interactions regulate the initiation of replication in the Tetrahymena thermophila rDNA minichromosome. Reischmann KP, Zhang Z, Kapler GM. Nucleic Acids Res; 1999 Aug 01; 27(15):3079-89. PubMed ID: 10454603 [Abstract] [Full Text] [Related]
18. Yeast centromere sequences do not confer mitotic stability on circular plasmids containing ARS elements of Tetrahymena thermophila rDNA. Amin AA, Pearlman RE. Curr Genet; 1987 Aug 01; 11(5):353-7. PubMed ID: 2836076 [Abstract] [Full Text] [Related]
19. Nonintegrative transformation in the filamentous fungus Podospora anserina: stabilization of a linear vector by the chromosomal ends of Tetrahymena thermophila. Perrot M, Barreau C, Bégueret J. Mol Cell Biol; 1987 May 01; 7(5):1725-30. PubMed ID: 3600642 [Abstract] [Full Text] [Related]
20. Gene amplification in Tetrahymena thermophila: formation of extrachromosomal palindromic genes coding for rRNA. Yao MC, Zhu SG, Yao CH. Mol Cell Biol; 1985 Jun 01; 5(6):1260-7. PubMed ID: 4033651 [Abstract] [Full Text] [Related] Page: [Next] [New Search]