These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
223 related items for PubMed ID: 28137884
41. Preliminary X-ray crystallographic studies of the catalytic subunit of Escherichia coli AHAS II with its cofactors. Niu X, Liu X, Zhou Y, Niu C, Xi Z, Su XD. Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jun 01; 67(Pt 6):659-61. PubMed ID: 21636904 [Abstract] [Full Text] [Related]
42. Structures of fungal and plant acetohydroxyacid synthases. Lonhienne T, Low YS, Garcia MD, Croll T, Gao Y, Wang Q, Brillault L, Williams CM, Fraser JA, McGeary RP, West NP, Landsberg MJ, Rao Z, Schenk G, Guddat LW. Nature; 2020 Oct 01; 586(7828):317-321. PubMed ID: 32640464 [Abstract] [Full Text] [Related]
43. Commercial AHAS-inhibiting herbicides are promising drug leads for the treatment of human fungal pathogenic infections. Garcia MD, Chua SMH, Low YS, Lee YT, Agnew-Francis K, Wang JG, Nouwens A, Lonhienne T, Williams CM, Fraser JA, Guddat LW. Proc Natl Acad Sci U S A; 2018 Oct 09; 115(41):E9649-E9658. PubMed ID: 30249642 [Abstract] [Full Text] [Related]
44. Binding and activation of thiamin diphosphate in acetohydroxyacid synthase. Bar-Ilan A, Balan V, Tittmann K, Golbik R, Vyazmensky M, Hübner G, Barak Z, Chipman DM. Biochemistry; 2001 Oct 02; 40(39):11946-54. PubMed ID: 11570896 [Abstract] [Full Text] [Related]
45. Identification of some novel AHAS inhibitors via molecular docking and virtual screening approach. Wang JG, Xiao YJ, Li YH, Ma Y, Li ZM. Bioorg Med Chem; 2007 Jan 01; 15(1):374-80. PubMed ID: 17049866 [Abstract] [Full Text] [Related]
46. The crystal structures of Klebsiella pneumoniae acetolactate synthase with enzyme-bound cofactor and with an unusual intermediate. Pang SS, Duggleby RG, Schowen RL, Guddat LW. J Biol Chem; 2004 Jan 16; 279(3):2242-53. PubMed ID: 14557277 [Abstract] [Full Text] [Related]
47. Design, synthesis and biological evaluation of novel N-nitrophenyl derivatives based on the structure of acetohydroxyacid synthase. Mao B, Gao M, Chen C, Li Z, Zhang HY, Zhang Q. Pestic Biochem Physiol; 2018 Feb 16; 145():100-107. PubMed ID: 29482725 [Abstract] [Full Text] [Related]
48. Controllable Soil Degradation Rate of 5-Substituted Sulfonylurea Herbicides as Novel AHAS Inhibitors. Zhou S, Meng FF, Hua XW, Li YH, Liu B, Wang BL, Chen J, Chen AL, Li ZM. J Agric Food Chem; 2020 Mar 11; 68(10):3017-3025. PubMed ID: 32059105 [Abstract] [Full Text] [Related]
49. Functional evaluation of residues in the herbicide-binding site of Mycobacterium tuberculosis acetohydroxyacid synthase by site-directed mutagenesis. Jung IP, Cho JH, Koo BS, Yoon MY. Enzyme Microb Technol; 2015 Oct 11; 78():18-26. PubMed ID: 26215340 [Abstract] [Full Text] [Related]
50. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I. Belenky I, Steinmetz A, Vyazmensky M, Barak Z, Tittmann K, Chipman DM. FEBS J; 2012 Jun 11; 279(11):1967-79. PubMed ID: 22443469 [Abstract] [Full Text] [Related]
51. [Expression of acetohydroxyacid synthase isozyme genes ilvBN, ilvGM, ilvIH and their resistance to AHAS-inhibitor herbicides]. Shen J, Li Y, Huang X, Yu X, He J, Li S. Sheng Wu Gong Cheng Xue Bao; 2009 Jul 11; 25(7):1007-13. PubMed ID: 19835141 [Abstract] [Full Text] [Related]
52. Acetohydroxyacid synthase from Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones. Zohar Y, Einav M, Chipman DM, Barak Z. Biochim Biophys Acta; 2003 Jun 26; 1649(1):97-105. PubMed ID: 12818195 [Abstract] [Full Text] [Related]
53. Two consecutive aspartic acid residues conferring herbicide resistance in tobacco acetohydroxy acid synthase. Le DT, Yoon MY, Tae Kim Y, Choi JD. Biochim Biophys Acta; 2005 May 20; 1749(1):103-12. PubMed ID: 15848141 [Abstract] [Full Text] [Related]
54. Fragment-based discovery of flexible inhibitor targeting wild-type acetohydroxyacid synthase and P197L mutant. Qu RY, Yang JF, Chen Q, Niu CW, Xi Z, Yang WC, Yang GF. Pest Manag Sci; 2020 Oct 20; 76(10):3403-3412. PubMed ID: 31943722 [Abstract] [Full Text] [Related]
55. Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Lonhienne T, Cheng Y, Garcia MD, Hu SH, Low YS, Schenk G, Williams CM, Guddat LW. Nat Commun; 2022 Jun 11; 13(1):3368. PubMed ID: 35690625 [Abstract] [Full Text] [Related]
56. Different cross-resistance patterns to AHAS herbicides of two tribenuron-methyl resistant flixweed (Descurainiasophia L.) biotypes in China. Deng W, Cao Y, Yang Q, Liu MJ, Mei Y, Zheng MQ. Pestic Biochem Physiol; 2014 Jun 11; 112():26-32. PubMed ID: 24974114 [Abstract] [Full Text] [Related]
57. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing. Hu M, Pu H, Gao J, Long W, Chen F, Zhang W, Zhou X, Peng Q, Chen S, Zhang J. PLoS One; 2017 Jun 11; 12(9):e0184917. PubMed ID: 28950015 [Abstract] [Full Text] [Related]
58. Imidazolinone-tolerant crops: history, current status and future. Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL. Pest Manag Sci; 2005 Mar 11; 61(3):246-57. PubMed ID: 15627242 [Abstract] [Full Text] [Related]
59. Acetohydroxyacid synthases: evolution, structure, and function. Liu Y, Li Y, Wang X. Appl Microbiol Biotechnol; 2016 Oct 11; 100(20):8633-49. PubMed ID: 27576495 [Abstract] [Full Text] [Related]
60. A Novel AHAS-Inhibiting Herbicide Candidate for Controlling Leptochloa chinensis: A Devastating Weedy Grass in Rice Fields. Chen Y, Yan Y, Chen J, Zheng B, Jiang Y, Kang Z, Wu J. J Agric Food Chem; 2024 Jul 24; 72(29):16140-16151. PubMed ID: 39007211 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]