These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


273 related items for PubMed ID: 28138928

  • 21. Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin.
    Garo E, Eldridge GR, Goering MG, DeLancey Pulcini E, Hamilton MA, Costerton JW, James GA.
    Antimicrob Agents Chemother; 2007 May; 51(5):1813-7. PubMed ID: 17353241
    [Abstract] [Full Text] [Related]

  • 22. Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin.
    Ahmed MN, Porse A, Sommer MOA, Høiby N, Ciofu O.
    Antimicrob Agents Chemother; 2018 Aug; 62(8):. PubMed ID: 29760140
    [Abstract] [Full Text] [Related]

  • 23. Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity.
    Bandara HM, Nguyen D, Mogarala S, Osiñski M, Smyth HD.
    Biofouling; 2015 Aug; 31(5):443-57. PubMed ID: 26103544
    [Abstract] [Full Text] [Related]

  • 24. Flagellin FliC Phosphorylation Affects Type 2 Protease Secretion and Biofilm Dispersal in Pseudomonas aeruginosa PAO1.
    Suriyanarayanan T, Periasamy S, Lin MH, Ishihama Y, Swarup S.
    PLoS One; 2016 Aug; 11(10):e0164155. PubMed ID: 27701473
    [Abstract] [Full Text] [Related]

  • 25. The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance.
    Ahmed MN, Abdelsamad A, Wassermann T, Porse A, Becker J, Sommer MOA, Høiby N, Ciofu O.
    NPJ Biofilms Microbiomes; 2020 Jul 24; 6(1):28. PubMed ID: 32709907
    [Abstract] [Full Text] [Related]

  • 26. PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1.
    Guo Q, Kong W, Jin S, Chen L, Xu Y, Duan K.
    J Basic Microbiol; 2014 Jul 24; 54(7):633-43. PubMed ID: 23996096
    [Abstract] [Full Text] [Related]

  • 27. Pharmacodynamics of ciprofloxacin against Pseudomonas aeruginosa planktonic and biofilm-derived cells.
    Marques CNH, Nelson SM.
    Lett Appl Microbiol; 2019 Apr 24; 68(4):350-359. PubMed ID: 30740751
    [Abstract] [Full Text] [Related]

  • 28. Conceptual Model of Biofilm Antibiotic Tolerance That Integrates Phenomena of Diffusion, Metabolism, Gene Expression, and Physiology.
    Stewart PS, White B, Boegli L, Hamerly T, Williamson KS, Franklin MJ, Bothner B, James GA, Fisher S, Vital-Lopez FG, Wallqvist A.
    J Bacteriol; 2019 Nov 15; 201(22):. PubMed ID: 31501280
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms.
    Ahmed MN, Porse A, Abdelsamad A, Sommer M, Høiby N, Ciofu O.
    Antimicrob Agents Chemother; 2019 Oct 15; 63(10):. PubMed ID: 31307984
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Bioactive composition, antimicrobial activities and the influence of Agrocybe aegerita (Brig.) Sing on certain quorum-sensing-regulated functions and biofilm formation by Pseudomonas aeruginosa.
    Petrović J, Glamočlija J, Stojković D, Nikolić M, Ćirić A, Fernandes A, Ferreira IC, Soković M.
    Food Funct; 2014 Dec 15; 5(12):3296-303. PubMed ID: 25367459
    [Abstract] [Full Text] [Related]

  • 34. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm.
    Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG.
    J Bacteriol; 2002 Feb 15; 184(4):1140-54. PubMed ID: 11807075
    [Abstract] [Full Text] [Related]

  • 35. Marine Bacteria, A Source for Alginolytic Enzyme to Disrupt Pseudomonas aeruginosa Biofilms.
    Daboor SM, Raudonis R, Cohen A, Rohde JR, Cheng Z.
    Mar Drugs; 2019 May 24; 17(5):. PubMed ID: 31137680
    [Abstract] [Full Text] [Related]

  • 36. Fabrication of inhaled hybrid silver/ciprofloxacin nanoparticles with synergetic effect against Pseudomonas aeruginosa.
    Al-Obaidi H, Kalgudi R, Zariwala MG.
    Eur J Pharm Biopharm; 2018 Jul 24; 128():27-35. PubMed ID: 29654885
    [Abstract] [Full Text] [Related]

  • 37. Molecular modeling and redesign of alginate lyase from Pseudomonas aeruginosa for accelerating CRPA biofilm degradation.
    Cho H, Huang X, Lan Piao Y, Eun Kim D, Yeon Lee S, Jeong Yoon E, Hee Park S, Lee K, Ho Jang C, Zhan CG.
    Proteins; 2016 Dec 24; 84(12):1875-1887. PubMed ID: 27676452
    [Abstract] [Full Text] [Related]

  • 38. Effects of combined treatment with ambroxol and ciprofloxacin on catheter-associated Pseudomonas aeruginosa biofilms in a rat model.
    Lu Q, Yu J, Bao L, Ran T, Zhong H.
    Chemotherapy; 2013 Dec 24; 59(1):51-6. PubMed ID: 23816803
    [Abstract] [Full Text] [Related]

  • 39. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation.
    Wu H, Lee B, Yang L, Wang H, Givskov M, Molin S, Høiby N, Song Z.
    FEMS Immunol Med Microbiol; 2011 Jun 24; 62(1):49-56. PubMed ID: 21303421
    [Abstract] [Full Text] [Related]

  • 40. Anti-biofilm activity of Marula - a study with the standardized bark extract.
    Sarkar R, Chaudhary SK, Sharma A, Yadav KK, Nema NK, Sekhoacha M, Karmakar S, Braga FC, Matsabisa MG, Mukherjee PK, Sen T.
    J Ethnopharmacol; 2014 May 28; 154(1):170-5. PubMed ID: 24742751
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.