These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
192 related items for PubMed ID: 28150746
1. Rapid cell separation with minimal manipulation for autologous cell therapies. Smith AJ, O'Rorke RD, Kale A, Rimsa R, Tomlinson MJ, Kirkham J, Davies AG, Wälti C, Wood CD. Sci Rep; 2017 Feb 02; 7():41872. PubMed ID: 28150746 [Abstract] [Full Text] [Related]
2. Embedded passivated-electrode insulator-based dielectrophoresis (EπDEP). Shake T, Zellner P, Sahari A, Breazeal MV, Behkam B, Pruden A, Agah M. Anal Bioanal Chem; 2013 Dec 02; 405(30):9825-33. PubMed ID: 24162823 [Abstract] [Full Text] [Related]
3. Bridging the scales in high-throughput dielectrophoretic (bio-)particle separation in porous media. Pesch GR, Lorenz M, Sachdev S, Salameh S, Du F, Baune M, Boukany PE, Thöming J. Sci Rep; 2018 Jul 11; 8(1):10480. PubMed ID: 29993026 [Abstract] [Full Text] [Related]
4. Label-Free Rapid Separation and Enrichment of Bone Marrow-Derived Mesenchymal Stem Cells from a Heterogeneous Cell Mixture Using a Dielectrophoresis Device. Yoshioka J, Ohsugi Y, Yoshitomi T, Yasukawa T, Sasaki N, Yoshimoto K. Sensors (Basel); 2018 Sep 08; 18(9):. PubMed ID: 30205546 [Abstract] [Full Text] [Related]
5. The potential of dielectrophoresis for single-cell experiments. Müller T, Pfennig A, Klein P, Gradl G, Jäger M, Schnelle T. IEEE Eng Med Biol Mag; 2003 Sep 08; 22(6):51-61. PubMed ID: 15007991 [No Abstract] [Full Text] [Related]
6. Low-cost, high-throughput and rapid-prototyped 3D-integrated dielectrophoretic channels for continuous cell enrichment and separation. Faraghat SA, Fatoyinbo HO, Hoettges KF, Hughes MP. Electrophoresis; 2023 Jun 08; 44(11-12):947-955. PubMed ID: 36409835 [Abstract] [Full Text] [Related]
7. Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Zhang C, Khoshmanesh K, Mitchell A, Kalantar-Zadeh K. Anal Bioanal Chem; 2010 Jan 08; 396(1):401-20. PubMed ID: 19578834 [Abstract] [Full Text] [Related]
8. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies. Braschler T, Demierre N, Nascimento E, Silva T, Oliva AG, Renaud P. Lab Chip; 2008 Feb 08; 8(2):280-6. PubMed ID: 18231667 [Abstract] [Full Text] [Related]
9. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L, Lu J, Marchenko SA, Monuki ES, Flanagan LA, Lee AP. Electrophoresis; 2009 Mar 08; 30(5):782-91. PubMed ID: 19197906 [Abstract] [Full Text] [Related]
10. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array. Wu Y, Ren Y, Tao Y, Hou L, Jiang H. Anal Chem; 2018 Oct 02; 90(19):11461-11469. PubMed ID: 30192521 [Abstract] [Full Text] [Related]
11. A flow-through microfluidic chip for continuous dielectrophoretic separation of viable and non-viable human T-cells. Mustafa A, Pedone E, Marucci L, Moschou D, Lorenzo MD. Electrophoresis; 2022 Feb 02; 43(3):501-508. PubMed ID: 34717293 [Abstract] [Full Text] [Related]
12. A novel approach to dielectrophoresis using carbon electrodes. Martinez-Duarte R, Renaud P, Madou MJ. Electrophoresis; 2011 Sep 02; 32(17):2385-92. PubMed ID: 21792991 [Abstract] [Full Text] [Related]
13. Blood cell capture in a sawtooth dielectrophoretic microchannel. Jones PV, Staton SJ, Hayes MA. Anal Bioanal Chem; 2011 Oct 02; 401(7):2103-11. PubMed ID: 21830138 [Abstract] [Full Text] [Related]
14. Separation and Detection of Escherichia coli and Saccharomyces cerevisiae Using a Microfluidic Device Integrated with an Optical Fibre. Kamuri MF, Zainal Abidin Z, Yaacob MH, Hamidon MN, Md Yunus NA, Kamarudin S. Biosensors (Basel); 2019 Mar 14; 9(1):. PubMed ID: 30875829 [Abstract] [Full Text] [Related]