These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


276 related items for PubMed ID: 28158721

  • 21. Transcriptome co-expression network analysis identifies key genes and regulators of ripening kiwifruit ester biosynthesis.
    Zhang A, Zhang Q, Li J, Gong H, Fan X, Yang Y, Liu X, Yin X.
    BMC Plant Biol; 2020 Mar 06; 20(1):103. PubMed ID: 32138665
    [Abstract] [Full Text] [Related]

  • 22. Kiwifruit EIL and ERF genes involved in regulating fruit ripening.
    Yin XR, Allan AC, Chen KS, Ferguson IB.
    Plant Physiol; 2010 Jul 06; 153(3):1280-92. PubMed ID: 20457803
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. A key structural gene, AaLDOX, is involved in anthocyanin biosynthesis in all red-fleshed kiwifruit (Actinidia arguta) based on transcriptome analysis.
    Li Y, Fang J, Qi X, Lin M, Zhong Y, Sun L.
    Gene; 2018 Mar 30; 648():31-41. PubMed ID: 29309888
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Comparative Transcriptome Analysis Revealed the Key Genes Regulating Ascorbic Acid Synthesis in Actinidia.
    Liu X, Xie X, Zhong C, Li D.
    Int J Mol Sci; 2021 Nov 29; 22(23):. PubMed ID: 34884699
    [Abstract] [Full Text] [Related]

  • 28. Genome-wide identification of WRKY transcription factors in kiwifruit (Actinidia spp.) and analysis of WRKY expression in responses to biotic and abiotic stresses.
    Jing Z, Liu Z.
    Genes Genomics; 2018 Apr 29; 40(4):429-446. PubMed ID: 29892845
    [Abstract] [Full Text] [Related]

  • 29. The control of chlorophyll levels in maturing kiwifruit.
    Pilkington SM, Montefiori M, Jameson PE, Allan AC.
    Planta; 2012 Nov 29; 236(5):1615-28. PubMed ID: 22843245
    [Abstract] [Full Text] [Related]

  • 30. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism.
    Nardozza S, Boldingh HL, Osorio S, Höhne M, Wohlers M, Gleave AP, MacRae EA, Richardson AC, Atkinson RG, Sulpice R, Fernie AR, Clearwater MJ.
    J Exp Bot; 2013 Nov 29; 64(16):5049-63. PubMed ID: 24058160
    [Abstract] [Full Text] [Related]

  • 31. Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening.
    Chen Y, Cheng C, Feng X, Lai R, Gao M, Chen W, Wu R.
    Sci Rep; 2021 Jan 18; 11(1):1671. PubMed ID: 33462344
    [Abstract] [Full Text] [Related]

  • 32. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit.
    Gan Z, Yuan X, Shan N, Wan C, Chen C, Xu Y, Xu Q, Chen J.
    Plant Sci; 2021 Aug 18; 309():110948. PubMed ID: 34134847
    [Abstract] [Full Text] [Related]

  • 33. Comparative transcriptome analysis reveals distinct ethylene-independent regulation of ripening in response to low temperature in kiwifruit.
    Asiche WO, Mitalo OW, Kasahara Y, Tosa Y, Mworia EG, Owino WO, Ushijima K, Nakano R, Yano K, Kubo Y.
    BMC Plant Biol; 2018 Mar 21; 18(1):47. PubMed ID: 29562897
    [Abstract] [Full Text] [Related]

  • 34. CRISPR-Cas9-mediated mutagenesis of kiwifruit BFT genes results in an evergrowing but not early flowering phenotype.
    Herath D, Voogd C, Mayo-Smith M, Yang B, Allan AC, Putterill J, Varkonyi-Gasic E.
    Plant Biotechnol J; 2022 Nov 21; 20(11):2064-2076. PubMed ID: 35796629
    [Abstract] [Full Text] [Related]

  • 35. Proteomics and Metabolomics Reveal the Regulatory Pathways of Ripening and Quality in Post-Harvest Kiwifruits.
    Tian X, Zhu L, Yang N, Song J, Zhao H, Zhang J, Ma F, Li M.
    J Agric Food Chem; 2021 Jan 20; 69(2):824-835. PubMed ID: 33410682
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Genome-Wide Identification and Expression Analysis of Kiwifruit Leucine-Rich Repeat Receptor-Like Proteins Reveal Their Roles in Biotic and Abiotic Stress Responses.
    Cao Y, Zhang C, Liu F, Li D, Zhang A, Li L, Zhang X.
    Int J Mol Sci; 2024 Apr 19; 25(8):. PubMed ID: 38674082
    [Abstract] [Full Text] [Related]

  • 38. Integrated transcriptome and targeted metabolome analyses provide insights into flavonoid biosynthesis in kiwifruit (Actinidia chinensis).
    Mao J, Gao Z, Wang X, Yao D, Lin M, Chen L.
    Sci Rep; 2024 Aug 21; 14(1):19417. PubMed ID: 39169238
    [Abstract] [Full Text] [Related]

  • 39. Genome-wide analysis of the bZIP gene family and the role of AchnABF1 from postharvest kiwifruit (Actinidia chinensis cv. Hongyang) in osmotic and freezing stress adaptations.
    Jin M, Gan S, Jiao J, He Y, Liu H, Yin X, Zhu Q, Rao J.
    Plant Sci; 2021 Jul 21; 308():110927. PubMed ID: 34034875
    [Abstract] [Full Text] [Related]

  • 40. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation.
    Ampomah-Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, Allan AC.
    New Phytol; 2019 Jan 21; 221(1):309-325. PubMed ID: 30067292
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.