These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
574 related items for PubMed ID: 28159788
1. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum. Ortiz de Ora L, Muñoz-Gutiérrez I, Bayer EA, Shoham Y, Lamed R, Borovok I. Appl Environ Microbiol; 2017 Apr 15; 83(8):. PubMed ID: 28159788 [Abstract] [Full Text] [Related]
2. Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome. Hirano K, Nihei S, Hasegawa H, Haruki M, Hirano N. Appl Environ Microbiol; 2015 Jul 15; 81(14):4756-66. PubMed ID: 25956772 [Abstract] [Full Text] [Related]
3. Genome-wide analysis of acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme CL, Huang Y, Zhou J, Bayer EA. BMC Genomics; 2012 May 30; 13():210. PubMed ID: 22646801 [Abstract] [Full Text] [Related]
4. Decoding Biomass-Sensing Regulons of Clostridium thermocellum Alternative Sigma-I Factors in a Heterologous Bacillus subtilis Host System. Muñoz-Gutiérrez I, Ortiz de Ora L, Rozman Grinberg I, Garty Y, Bayer EA, Shoham Y, Lamed R, Borovok I. PLoS One; 2016 May 30; 11(1):e0146316. PubMed ID: 26731480 [Abstract] [Full Text] [Related]
5. Three cellulosomal xylanase genes in Clostridium thermocellum are regulated by both vegetative SigA (σ(A)) and alternative SigI6 (σ(I6)) factors. Sand A, Holwerda EK, Ruppertsberger NM, Maloney M, Olson DG, Nataf Y, Borovok I, Sonenshein AL, Bayer EA, Lamed R, Lynd LR, Shoham Y. FEBS Lett; 2015 Oct 07; 589(20 Pt B):3133-40. PubMed ID: 26320414 [Abstract] [Full Text] [Related]
6. Differences in biomass degradation between newly isolated environmental strains of Clostridium thermocellum and heterogeneity in the size of the cellulosomal scaffoldin. Koeck DE, Koellmeier T, Zverlov VV, Liebl W, Schwarz WH. Syst Appl Microbiol; 2015 Sep 07; 38(6):424-32. PubMed ID: 26227216 [Abstract] [Full Text] [Related]
7. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Decker SR, Giannone RJ, Hettich RL, Brown SD, Lynd LR, Bayer EA, Himmel ME, Bomble YJ. Sci Adv; 2016 Feb 07; 2(2):e1501254. PubMed ID: 26989779 [Abstract] [Full Text] [Related]
8. Dynamic interactions of type I cohesin modules fine-tune the structure of the cellulosome of Clostridium thermocellum. Barth A, Hendrix J, Fried D, Barak Y, Bayer EA, Lamb DC. Proc Natl Acad Sci U S A; 2018 Nov 27; 115(48):E11274-E11283. PubMed ID: 30429330 [Abstract] [Full Text] [Related]
9. Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Nataf Y, Bahari L, Kahel-Raifer H, Borovok I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y. Proc Natl Acad Sci U S A; 2010 Oct 26; 107(43):18646-51. PubMed ID: 20937888 [Abstract] [Full Text] [Related]
10. Comparative Biochemical Analysis of Cellulosomes Isolated from Clostridium clariflavum DSM 19732 and Clostridium thermocellum ATCC 27405 Grown on Plant Biomass. Shinoda S, Kurosaki M, Kokuzawa T, Hirano K, Takano H, Ueda K, Haruki M, Hirano N. Appl Biochem Biotechnol; 2019 Mar 26; 187(3):994-1010. PubMed ID: 30136170 [Abstract] [Full Text] [Related]
11. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Kim S, Baek SH, Lee K, Hahn JS. Microb Cell Fact; 2013 Feb 05; 12():14. PubMed ID: 23383678 [Abstract] [Full Text] [Related]
12. Distinctive ligand-binding specificities of tandem PA14 biomass-sensory elements from Clostridium thermocellum and Clostridium clariflavum. Grinberg IR, Yaniv O, de Ora LO, Muñoz-Gutiérrez I, Hershko A, Livnah O, Bayer EA, Borovok I, Frolow F, Lamed R, Voronov-Goldman M. Proteins; 2019 Nov 05; 87(11):917-930. PubMed ID: 31162722 [Abstract] [Full Text] [Related]
13. Cellulose hydrolysis ability of a Clostridium thermocellum cellulosome containing small-size scaffolding protein CipA. Deng L, Mori Y, Sermsathanaswadi J, Apiwatanapiwat W, Kosugi A. J Biotechnol; 2015 Oct 20; 212():144-52. PubMed ID: 26302838 [Abstract] [Full Text] [Related]
14. Structure of a family 3a carbohydrate-binding module from the cellulosomal scaffoldin CipA of Clostridium thermocellum with flanking linkers: implications for cellulosome structure. Yaniv O, Morag E, Borovok I, Bayer EA, Lamed R, Frolow F, Shimon LJ. Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jul 20; 69(Pt 7):733-7. PubMed ID: 23832198 [Abstract] [Full Text] [Related]
15. Minimalistic Cellulosome of the Butanologenic Bacterium Clostridium saccharoperbutylacetonicum. Levi Hevroni B, Moraïs S, Ben-David Y, Morag E, Bayer EA. mBio; 2020 Mar 31; 11(2):. PubMed ID: 32234813 [Abstract] [Full Text] [Related]
16. The contribution of cellulosomal scaffoldins to cellulose hydrolysis by Clostridium thermocellum analyzed by using thermotargetrons. Hong W, Zhang J, Feng Y, Mohr G, Lambowitz AM, Cui GZ, Liu YJ, Cui Q. Biotechnol Biofuels; 2014 Mar 31; 7():80. PubMed ID: 24955112 [Abstract] [Full Text] [Related]
17. Clostridium clariflavum: Key Cellulosome Players Are Revealed by Proteomic Analysis. Artzi L, Morag E, Barak Y, Lamed R, Bayer EA. mBio; 2015 May 19; 6(3):e00411-15. PubMed ID: 25991683 [Abstract] [Full Text] [Related]
18. Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. Pinheiro BA, Gilbert HJ, Sakka K, Sakka K, Fernandes VO, Prates JA, Alves VD, Bolam DN, Ferreira LM, Fontes CM. Biochem J; 2009 Dec 10; 424(3):375-84. PubMed ID: 19758121 [Abstract] [Full Text] [Related]
19. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R. J Bacteriol; 1999 Nov 10; 181(21):6720-9. PubMed ID: 10542174 [Abstract] [Full Text] [Related]
20. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR. PLoS One; 2009 Nov 10; 4(4):e5271. PubMed ID: 19384422 [Abstract] [Full Text] [Related] Page: [Next] [New Search]