These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
165 related items for PubMed ID: 28175
1. Oxidation of gallium sulfides by Thiobacillus ferrooxidans. Torma AE. Can J Microbiol; 1978 Jul; 24(7):888-91. PubMed ID: 28175 [Abstract] [Full Text] [Related]
2. Pyrite oxidation by Thiobacillus ferrooxidans with special reference to the sulphur moiety of the mineral. Arkesteyn GJ. Antonie Van Leeuwenhoek; 1979 Jul; 45(3):423-35. PubMed ID: 45294 [Abstract] [Full Text] [Related]
3. Microbiological leaching of a chalcopyrite concentrate by Thiobacillus ferrooxidans. Sakaguchi H, Silver M. Biotechnol Bioeng; 1976 Aug; 18(8):1091-1101. PubMed ID: 953169 [Abstract] [Full Text] [Related]
4. Oxidation of metal sulfides by Thiobacillus ferrooxidans grown on different substrates. Silver M, Torma AE. Can J Microbiol; 1974 Feb; 20(2):141-7. PubMed ID: 4822784 [No Abstract] [Full Text] [Related]
9. Direct sulfide oxidation in the solubilization of sulfide ores by Thiobacillus ferrooxidans. Beck JV, Brown DG. J Bacteriol; 1968 Oct; 96(4):1433-4. PubMed ID: 5686009 [No Abstract] [Full Text] [Related]
10. Microbiological oxidation of synthetic chalcocite and covellite by Thiobacillus ferrooxidans. Sakaguchi H, Torma AE, Silver M. Appl Environ Microbiol; 1976 Jan; 31(1):7-10. PubMed ID: 8006 [Abstract] [Full Text] [Related]
11. [Metal sulfides biodegradation by "Thiobacillus ferrooxidans": effect of their total surfaces]. Torma AE, Legault G. Ann Microbiol (Paris); 1973 Jan; 124(1):111-21. PubMed ID: 4723414 [No Abstract] [Full Text] [Related]
12. Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans. Lewis AJ, Miller JD. Can J Microbiol; 1977 Mar; 23(3):319-24. PubMed ID: 15717 [Abstract] [Full Text] [Related]
13. Influence of heterotrophic microbial growth on biological oxidation of pyrite. Marchand EA, Silverstein J. Environ Sci Technol; 2002 Dec 15; 36(24):5483-90. PubMed ID: 12521179 [Abstract] [Full Text] [Related]
14. Investigations into the kinetics and stoichiometry of bacterial oxidation of covellite (CuS) using a polarographic oxygen probe. Rickard PA, Vanselow DG. Can J Microbiol; 1978 Aug 15; 24(8):998-1003. PubMed ID: 688107 [Abstract] [Full Text] [Related]
15. Influence of preservation substrate on iron oxidation ability of various Thiobacillus ferrooxidans isolates. Menon AG, Dave SR. Microbiol Res; 1996 Aug 15; 151(3):225-9. PubMed ID: 8817915 [Abstract] [Full Text] [Related]
16. [Oxidation of sulfide minerals by Thiobacillus ferrooxidans]. Malakhova PT, Chebotarev GM, Kovalenko EV, Volkov IuA. Mikrobiologiia; 1981 Aug 15; 50(1):147-55. PubMed ID: 7219212 [Abstract] [Full Text] [Related]
17. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Fowler TA, Crundwell FK. Appl Environ Microbiol; 1999 Dec 15; 65(12):5285-92. PubMed ID: 10583978 [Abstract] [Full Text] [Related]
18. [Effect of pH and temperature on the kinetics of Fe2+ oxidation by Thiobacillus ferrooxidans]. Moshniakova SA, Karavaiko GI. Mikrobiologiia; 1979 Dec 15; 48(1):49-52. PubMed ID: 34080 [Abstract] [Full Text] [Related]
19. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Rawlings DE, Tributsch H, Hansford GS. Microbiology (Reading); 1999 Jan 15; 145 ( Pt 1)():5-13. PubMed ID: 10206710 [No Abstract] [Full Text] [Related]
20. Microbiological oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans. Torma AE. Rev Can Biol; 1971 Sep 15; 30(3):209-16. PubMed ID: 4948817 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]