These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
302 related items for PubMed ID: 28181082
1. Growth and expression of relevant metabolic genes of Clostridium thermocellum cultured on lignocellulosic residues. Leitão VO, Noronha EF, Camargo BR, Hamann PRV, Steindorff AS, Quirino BF, de Sousa MV, Ulhoa CJ, Felix CR. J Ind Microbiol Biotechnol; 2017 Jun; 44(6):825-834. PubMed ID: 28181082 [Abstract] [Full Text] [Related]
2. Characterization of Clostridium thermocellum (B8) secretome and purified cellulosomes for lignocellulosic biomass degradation. Osiro KO, de Camargo BR, Satomi R, Hamann PR, Silva JP, de Sousa MV, Quirino BF, Aquino EN, Felix CR, Murad AM, Noronha EF. Enzyme Microb Technol; 2017 Feb; 97():43-54. PubMed ID: 28010772 [Abstract] [Full Text] [Related]
3. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M. Bioresour Technol; 2018 Feb; 250():860-867. PubMed ID: 30001594 [Abstract] [Full Text] [Related]
4. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. Moraïs S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA. mBio; 2012 Dec 11; 3(6):. PubMed ID: 23232718 [Abstract] [Full Text] [Related]
5. Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum. Ortiz de Ora L, Muñoz-Gutiérrez I, Bayer EA, Shoham Y, Lamed R, Borovok I. Appl Environ Microbiol; 2017 Apr 15; 83(8):. PubMed ID: 28159788 [Abstract] [Full Text] [Related]
6. Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Decker SR, Giannone RJ, Hettich RL, Brown SD, Lynd LR, Bayer EA, Himmel ME, Bomble YJ. Sci Adv; 2016 Feb 15; 2(2):e1501254. PubMed ID: 26989779 [Abstract] [Full Text] [Related]
7. [Mics of the Clostridium thermocellum in lignocellulose degradation--a review]. Chen L, Wang L, Zhang H. Wei Sheng Wu Xue Bao; 2014 Feb 04; 54(2):121-8. PubMed ID: 24818461 [Abstract] [Full Text] [Related]
8. How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313? Yoav S, Barak Y, Shamshoum M, Borovok I, Lamed R, Dassa B, Hadar Y, Morag E, Bayer EA. Biotechnol Biofuels; 2017 Feb 04; 10():222. PubMed ID: 28932263 [Abstract] [Full Text] [Related]
9. Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain. Tachaapaikoon C, Kosugi A, Pason P, Waeonukul R, Ratanakhanokchai K, Kyu KL, Arai T, Murata Y, Mori Y. Biodegradation; 2012 Feb 04; 23(1):57-68. PubMed ID: 21637976 [Abstract] [Full Text] [Related]
10. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR. PLoS One; 2009 Feb 04; 4(4):e5271. PubMed ID: 19384422 [Abstract] [Full Text] [Related]
11. Comparative Biochemical Analysis of Cellulosomes Isolated from Clostridium clariflavum DSM 19732 and Clostridium thermocellum ATCC 27405 Grown on Plant Biomass. Shinoda S, Kurosaki M, Kokuzawa T, Hirano K, Takano H, Ueda K, Haruki M, Hirano N. Appl Biochem Biotechnol; 2019 Mar 04; 187(3):994-1010. PubMed ID: 30136170 [Abstract] [Full Text] [Related]
12. The spatial proximity effect of beta-glucosidase and cellulosomes on cellulose degradation. Li X, Xiao Y, Feng Y, Li B, Li W, Cui Q. Enzyme Microb Technol; 2018 Aug 04; 115():52-61. PubMed ID: 29859603 [Abstract] [Full Text] [Related]
13. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. Raman B, McKeown CK, Rodriguez M, Brown SD, Mielenz JR. BMC Microbiol; 2011 Jun 14; 11():134. PubMed ID: 21672225 [Abstract] [Full Text] [Related]
14. Three cellulosomal xylanase genes in Clostridium thermocellum are regulated by both vegetative SigA (σ(A)) and alternative SigI6 (σ(I6)) factors. Sand A, Holwerda EK, Ruppertsberger NM, Maloney M, Olson DG, Nataf Y, Borovok I, Sonenshein AL, Bayer EA, Lamed R, Lynd LR, Shoham Y. FEBS Lett; 2015 Oct 07; 589(20 Pt B):3133-40. PubMed ID: 26320414 [Abstract] [Full Text] [Related]
15. Development of a quantitative real-time PCR assay for direct detection of growth of cellulose-degrading bacterium Clostridium thermocellum in lignocellulosic degradation. Tang H, Ou JF, Zhu MJ. J Appl Microbiol; 2015 Jun 07; 118(6):1333-44. PubMed ID: 25801786 [Abstract] [Full Text] [Related]
16. Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase. Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y. J Bacteriol; 2005 Apr 07; 187(7):2261-6. PubMed ID: 15774868 [Abstract] [Full Text] [Related]
17. LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313. Wilson CM, Klingeman DM, Schlachter C, Syed MH, Wu CW, Guss AM, Brown SD. Appl Environ Microbiol; 2017 Mar 01; 83(5):. PubMed ID: 28003194 [Abstract] [Full Text] [Related]
18. Differences in biomass degradation between newly isolated environmental strains of Clostridium thermocellum and heterogeneity in the size of the cellulosomal scaffoldin. Koeck DE, Koellmeier T, Zverlov VV, Liebl W, Schwarz WH. Syst Appl Microbiol; 2015 Sep 01; 38(6):424-32. PubMed ID: 26227216 [Abstract] [Full Text] [Related]