These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
317 related items for PubMed ID: 28181586
1. Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways. Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, Kumari S, Ojha S, Arya DS. Sci Rep; 2017 Feb 09; 7():42027. PubMed ID: 28181586 [Abstract] [Full Text] [Related]
2. Molecular Pathways Involved in the Amelioration of Myocardial Injury in Diabetic Rats by Kaempferol. Suchal K, Malik S, Khan SI, Malhotra RK, Goyal SN, Bhatia J, Ojha S, Arya DS. Int J Mol Sci; 2017 May 15; 18(5):. PubMed ID: 28505121 [Abstract] [Full Text] [Related]
3. Mangiferin protect myocardial insults through modulation of MAPK/TGF-β pathways. Suchal K, Malik S, Gamad N, Malhotra RK, Goyal SN, Ojha S, Kumari S, Bhatia J, Arya DS. Eur J Pharmacol; 2016 Apr 05; 776():34-43. PubMed ID: 26921754 [Abstract] [Full Text] [Related]
4. Chrysin, a PPAR-γ agonist improves myocardial injury in diabetic rats through inhibiting AGE-RAGE mediated oxidative stress and inflammation. Rani N, Bharti S, Bhatia J, Nag TC, Ray R, Arya DS. Chem Biol Interact; 2016 Apr 25; 250():59-67. PubMed ID: 26972669 [Abstract] [Full Text] [Related]
5. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats. Hou J, Zheng D, Fung G, Deng H, Chen L, Liang J, Jiang Y, Hu Y. Can J Physiol Pharmacol; 2016 Mar 25; 94(3):332-40. PubMed ID: 26751764 [Abstract] [Full Text] [Related]
6. Suppression of methylglyoxal hyperactivity by mangiferin can prevent diabetes-associated cognitive decline in rats. Liu YW, Zhu X, Yang QQ, Lu Q, Wang JY, Li HP, Wei YQ, Yin JL, Yin XX. Psychopharmacology (Berl); 2013 Aug 25; 228(4):585-94. PubMed ID: 23529380 [Abstract] [Full Text] [Related]
7. RAGE-Aptamer Blocks the Development and Progression of Experimental Diabetic Nephropathy. Matsui T, Higashimoto Y, Nishino Y, Nakamura N, Fukami K, Yamagishi SI. Diabetes; 2017 Jun 25; 66(6):1683-1695. PubMed ID: 28385802 [Abstract] [Full Text] [Related]
8. Angiotensin II Induces Increased Myocardial Expression of Receptor for Advanced Glycation End Products, Monocyte/Macrophage Infiltration and Circulating Endothelin-1 in Rats With Experimental Diabetes. Muñoz N, Pedreañez A, Mosquera J. Can J Diabetes; 2020 Oct 25; 44(7):651-656. PubMed ID: 32654973 [Abstract] [Full Text] [Related]
9. Stress-strain analysis of contractility in the ileum in response to flow and ramp distension in streptozotocin-induced diabetic rats--association with advanced glycation end product formation. Zhao J, Chen P, Gregersen H. J Biomech; 2015 Apr 13; 48(6):1075-83. PubMed ID: 25682538 [Abstract] [Full Text] [Related]
10. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Sanajou D, Ghorbani Haghjo A, Argani H, Aslani S. Eur J Pharmacol; 2018 Aug 15; 833():158-164. PubMed ID: 29883668 [Abstract] [Full Text] [Related]
11. Up-regulation of glyoxalase 1 by mangiferin prevents diabetic nephropathy progression in streptozotocin-induced diabetic rats. Liu YW, Zhu X, Zhang L, Lu Q, Wang JY, Zhang F, Guo H, Yin JL, Yin XX. Eur J Pharmacol; 2013 Dec 05; 721(1-3):355-64. PubMed ID: 24036348 [Abstract] [Full Text] [Related]
12. Advanced glycation end products induced IL-6 and VEGF-A production and apoptosis in osteocyte-like MLO-Y4 cells by activating RAGE and ERK1/2, P38 and STAT3 signalling pathways. Chen H, Liu W, Wu X, Gou M, Shen J, Wang H. Int Immunopharmacol; 2017 Nov 05; 52():143-149. PubMed ID: 28910744 [Abstract] [Full Text] [Related]
13. Reduction of advanced-glycation end products levels and inhibition of RAGE signaling decreases rat vascular calcification induced by diabetes. Brodeur MR, Bouvet C, Bouchard S, Moreau S, Leblond J, Deblois D, Moreau P. PLoS One; 2014 Nov 05; 9(1):e85922. PubMed ID: 24465790 [Abstract] [Full Text] [Related]
14. Soluble receptor for advanced glycation end-products promotes angiogenesis through activation of STAT3 in myocardial ischemia/reperfusion injury. Cao X, Li B, Han X, Zhang X, Dang M, Wang H, Du F, Zeng X, Guo C. Apoptosis; 2020 Jun 05; 25(5-6):341-353. PubMed ID: 32333220 [Abstract] [Full Text] [Related]
15. Hyperglycemia and liver ischemia reperfusion injury: a role for the advanced glycation endproduct and its receptor pathway. Yue S, Zhou HM, Zhu JJ, Rao JH, Busuttil RW, Kupiec-Weglinski JW, Lu L, Zhai Y. Am J Transplant; 2015 Nov 05; 15(11):2877-87. PubMed ID: 26112980 [Abstract] [Full Text] [Related]
16. Mangiferin from Salacia chinensis prevents oxidative stress and protects pancreatic β-cells in streptozotocin-induced diabetic rats. Sellamuthu PS, Arulselvan P, Muniappan BP, Fakurazi S, Kandasamy M. J Med Food; 2013 Aug 05; 16(8):719-27. PubMed ID: 23957355 [Abstract] [Full Text] [Related]
17. The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice. Hansen LM, Gupta D, Joseph G, Weiss D, Taylor WR. Lab Invest; 2017 Jan 05; 97(1):34-42. PubMed ID: 27869797 [Abstract] [Full Text] [Related]
18. Advanced glycation end products increase expression of S100A8 and A9 via RAGE-MAPK in rat dental pulp cells. Nakajima Y, Inagaki Y, Kido J, Nagata T. Oral Dis; 2015 Apr 05; 21(3):328-34. PubMed ID: 25098709 [Abstract] [Full Text] [Related]
19. Trans-resveratrol mitigates type 1 diabetes-induced oxidative DNA damage and accumulation of advanced glycation end products in glomeruli and tubules of rat kidneys. Al-Hussaini H, Kilarkaje N. Toxicol Appl Pharmacol; 2018 Jan 15; 339():97-109. PubMed ID: 29229234 [Abstract] [Full Text] [Related]
20. [Effects of Simvastatin on Diabetic Neuropathic Pain and Systematic Inflammation in Diabetic Rat Models and Their Molecular Mechanisms]. Zhang X, Shen L, Huang YG. Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2019 Jun 30; 41(3):283-290. PubMed ID: 31282320 [Abstract] [Full Text] [Related] Page: [Next] [New Search]