These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


427 related items for PubMed ID: 28183613

  • 1. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.
    Silva E, Vasconcellos LMR, Rodrigues BVM, Dos Santos DM, Campana-Filho SP, Marciano FR, Webster TJ, Lobo AO.
    Mater Sci Eng C Mater Biol Appl; 2017 Apr 01; 73():31-39. PubMed ID: 28183613
    [Abstract] [Full Text] [Related]

  • 2. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration.
    Siqueira IA, Corat MA, Cavalcanti Bd, Ribeiro Neto WA, Martin AA, Bretas RE, Marciano FR, Lobo AO.
    ACS Appl Mater Interfaces; 2015 May 13; 7(18):9385-98. PubMed ID: 25899398
    [Abstract] [Full Text] [Related]

  • 3. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation.
    Rodrigues BV, Leite NC, Cavalcanti Bd, da Silva NS, Marciano FR, Corat EJ, Webster TJ, Lobo AO.
    Int J Nanomedicine; 2016 May 13; 11():2569-85. PubMed ID: 27358560
    [Abstract] [Full Text] [Related]

  • 4. Influence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly (butylene adipate-co-terephthalate) fibers.
    Rodrigues BVM, Silva AS, Melo GFS, Vasconscellos LMR, Marciano FR, Lobo AO.
    Mater Sci Eng C Mater Biol Appl; 2016 Feb 13; 59():782-791. PubMed ID: 26652433
    [Abstract] [Full Text] [Related]

  • 5. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration.
    Gutiérrez-Hernández JM, Escobar-García DM, Escalante A, Flores H, González FJ, Gatenholm P, Toriz G.
    Mater Sci Eng C Mater Biol Appl; 2017 Jun 01; 75():445-453. PubMed ID: 28415484
    [Abstract] [Full Text] [Related]

  • 6. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C, Sprio S, Panseri S, Dapporto M, Marcacci M, Tampieri A.
    J Biomed Mater Res A; 2013 Jun 01; 101(6):1612-9. PubMed ID: 23172612
    [Abstract] [Full Text] [Related]

  • 7. Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone.
    Santana-Melo GF, Rodrigues BVM, da Silva E, Ricci R, Marciano FR, Webster TJ, Vasconcellos LMR, Lobo AO.
    Colloids Surf B Biointerfaces; 2017 Jul 01; 155():544-552. PubMed ID: 28494433
    [Abstract] [Full Text] [Related]

  • 8. Activation of osteoblast-like MC3T3-E1 cell responses by poly(lactide).
    Ikarashi Y, Tsuchiya T, Kaniwa M, Nakamura A.
    Biol Pharm Bull; 2000 Dec 01; 23(12):1470-6. PubMed ID: 11145180
    [Abstract] [Full Text] [Related]

  • 9. Multi-walled carbon nanotubes/graphene oxide hybrid and nanohydroxyapatite composite: A novel coating to prevent dentin erosion.
    Nahorny S, Zanin H, Christino VA, Marciano FR, Lobo AO, Soares LES.
    Mater Sci Eng C Mater Biol Appl; 2017 Oct 01; 79():199-208. PubMed ID: 28629008
    [Abstract] [Full Text] [Related]

  • 10. Reinforcing β-tricalcium phosphate scaffolds for potential applications in bone tissue engineering: impact of functionalized multi-walled carbon nanotubes.
    Hesaraki S, Saba G, Shahrezaee M, Nezafati N, Orshesh Z, Roshanfar F, Borhan S, Glasmacher B, Makvandi P, Xu Y.
    Sci Rep; 2024 Aug 17; 14(1):19055. PubMed ID: 39154029
    [Abstract] [Full Text] [Related]

  • 11. Surfactant as a critical factor when tuning the hydrophilicity in three-dimensional polyester-based scaffolds: impact of hydrophilicity on their mechanical properties and the cellular response of human osteoblast-like cells.
    Sun Y, Xing Z, Xue Y, Mustafa K, Finne-Wistrand A, Albertsson AC.
    Biomacromolecules; 2014 Apr 14; 15(4):1259-68. PubMed ID: 24559372
    [Abstract] [Full Text] [Related]

  • 12. In vitro analysis and mechanical properties of twin screw extruded single-layered and coextruded multilayered poly(caprolactone) scaffolds seeded with human fetal osteoblasts for bone tissue engineering.
    Ergun A, Yu X, Valdevit A, Ritter A, Kalyon DM.
    J Biomed Mater Res A; 2011 Dec 01; 99(3):354-66. PubMed ID: 22021183
    [Abstract] [Full Text] [Related]

  • 13. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation.
    Mikael PE, Amini AR, Basu J, Josefina Arellano-Jimenez M, Laurencin CT, Sanders MM, Barry Carter C, Nukavarapu SP.
    Biomed Mater; 2014 Jun 01; 9(3):035001. PubMed ID: 24687391
    [Abstract] [Full Text] [Related]

  • 14. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells.
    Lu W, Ji K, Kirkham J, Yan Y, Boccaccini AR, Kellett M, Jin Y, Yang XB.
    Cell Tissue Res; 2014 Apr 01; 356(1):97-107. PubMed ID: 24408074
    [Abstract] [Full Text] [Related]

  • 15. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes.
    Holmes B, Castro NJ, Li J, Keidar M, Zhang LG.
    Nanotechnology; 2013 Sep 13; 24(36):365102. PubMed ID: 23959974
    [Abstract] [Full Text] [Related]

  • 16. In vitro characterization of 3D printed scaffolds aimed at bone tissue regeneration.
    Boga JC, Miguel SP, de Melo-Diogo D, Mendonça AG, Louro RO, Correia IJ.
    Colloids Surf B Biointerfaces; 2018 May 01; 165():207-218. PubMed ID: 29486449
    [Abstract] [Full Text] [Related]

  • 17. Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds.
    Unagolla JM, Jayasuriya AC.
    Mater Sci Eng C Mater Biol Appl; 2019 Sep 01; 102():1-11. PubMed ID: 31146979
    [Abstract] [Full Text] [Related]

  • 18. Evaluating the osteogenic properties of polyhydroxybutyrate-zein/multiwalled carbon nanotubes (MWCNTs) electrospun composite scaffold for bone tissue engineering applications.
    Esmaeili M, Ghasemi S, Shariati L, Karbasi S.
    Int J Biol Macromol; 2024 Sep 01; 276(Pt 2):133829. PubMed ID: 39002904
    [Abstract] [Full Text] [Related]

  • 19. Assessment of PCL/carbon material scaffolds for bone regeneration.
    Wang W, Huang B, Byun JJ, Bártolo P.
    J Mech Behav Biomed Mater; 2019 May 01; 93():52-60. PubMed ID: 30769234
    [Abstract] [Full Text] [Related]

  • 20. Biological and mechanical evaluation of poly(lactic-co-glycolic acid)-based composites reinforced with 1D, 2D and 3D carbon biomaterials for bone tissue regeneration.
    Kaur T, Kulanthaivel S, Thirugnanam A, Banerjee I, Pramanik K.
    Biomed Mater; 2017 Mar 20; 12(2):025012. PubMed ID: 28181476
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.