These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


307 related items for PubMed ID: 2818445

  • 1. Atrial bioenergetic variations in moderate hypoxia: danger or protective defense?
    Caparrotta L, Poja R, Ragazzi E, Froldi G, Pandolfo L, Prosdocimi M, Fassina G.
    Basic Res Cardiol; 1989; 84(5):449-60. PubMed ID: 2818445
    [Abstract] [Full Text] [Related]

  • 2. Reversibility of mechanical and biochemical changes in smooth muscle due to anoxia and substrate depletion.
    Knull HR, Bose D.
    Am J Physiol; 1975 Aug; 229(2):329-33. PubMed ID: 1163661
    [Abstract] [Full Text] [Related]

  • 3. Species-dependent effects of increasing hypoxia on functions and energy balance in isolated atria.
    Froldi G, Pandolfo L, De Biasi M, Chinellato A, Ragazzi E, Caparrotta L, Fassina G.
    Comp Biochem Physiol Comp Physiol; 1993 May; 105(1):21-7. PubMed ID: 8099871
    [Abstract] [Full Text] [Related]

  • 4. The effects of cyclic AMP and cyclic GMP on redox state and energy state in hypoxic rat atria.
    Vuorinen P, Laustiola K, Metsä-Ketelä T.
    Life Sci; 1984 Jul 09; 35(2):155-61. PubMed ID: 6330484
    [Abstract] [Full Text] [Related]

  • 5. The effect of lead on the metabolic and energetic status of the Yabby, Cherax destructor, during environmental hypoxia.
    Morris S, van Aardt WJ, Ahern MD.
    Aquat Toxicol; 2005 Oct 05; 75(1):16-31. PubMed ID: 16083977
    [Abstract] [Full Text] [Related]

  • 6. Adenine nucleotide metabolites are beneficial for recovery of cardiac contractile force after hypoxia.
    Takeo S, Tanonaka K, Miyake K, Imago M.
    J Mol Cell Cardiol; 1988 Mar 05; 20(3):187-99. PubMed ID: 3398053
    [Abstract] [Full Text] [Related]

  • 7. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart.
    Tanonaka K, Niwa T, Takeo S.
    Jpn Heart J; 1996 Jan 05; 37(1):105-17. PubMed ID: 8632618
    [Abstract] [Full Text] [Related]

  • 8. Effect of creatine phosphate administration on the rat heart adenylate pool.
    Ronca-Testoni S, Galbani P, Ronca G.
    J Mol Cell Cardiol; 1985 Dec 05; 17(12):1185-8. PubMed ID: 4087306
    [Abstract] [Full Text] [Related]

  • 9. Tolerance to hypoxia of myocardium from adult and aged spontaneously hypertensive rats.
    Brooks WW, Ingwall JS, Conrad CH, Holubarsch C, Bing OH.
    Am J Physiol; 1987 Jun 05; 252(6 Pt 2):H1096-104. PubMed ID: 3591964
    [Abstract] [Full Text] [Related]

  • 10. Protection of atrial function in hypoxia by high potassium concentration.
    Froldi G, Pandolfo L, Chinellato A, Ragazzi E, Caparrotta L, Fassina G.
    Gen Pharmacol; 1994 May 05; 25(3):401-7. PubMed ID: 7926581
    [Abstract] [Full Text] [Related]

  • 11. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL, Hassinen I.
    Acta Physiol Scand; 1978 Sep 05; 104(1):109-16. PubMed ID: 211796
    [Abstract] [Full Text] [Related]

  • 12. Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes.
    Budinger GR, Chandel N, Shao ZH, Li CQ, Melmed A, Becker LB, Schumacker PT.
    Am J Physiol; 1996 Jan 05; 270(1 Pt 1):L44-53. PubMed ID: 8772526
    [Abstract] [Full Text] [Related]

  • 13. Effect of dopexamine on intestinal tissue concentrations of high-energy phosphates and intestinal release of purine compounds in endotoxemic rats.
    Schmidt H, Weigand MA, Schmidt W, Plaschke K, Martin E, Bardenheuer HJ.
    Crit Care Med; 2000 Jun 05; 28(6):1979-84. PubMed ID: 10890651
    [Abstract] [Full Text] [Related]

  • 14. Cardiac force and high-energy phosphates under metabolic inhibition in four ectothermic vertebrates.
    Hartmund T, Gesser H.
    Am J Physiol; 1996 Oct 05; 271(4 Pt 2):R946-54. PubMed ID: 8897986
    [Abstract] [Full Text] [Related]

  • 15. Allopurinol enhances adenine nucleotide levels and improves myocardial function in isolated hypoxic rat heart.
    Khatib SY, Farah H, El-Migdadi F.
    Biochemistry (Mosc); 2001 Mar 05; 66(3):328-33. PubMed ID: 11333159
    [Abstract] [Full Text] [Related]

  • 16. Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats.
    Yager JY, Brucklacher RM, Vannucci RC.
    Am J Physiol; 1992 Mar 05; 262(3 Pt 2):H672-7. PubMed ID: 1558174
    [Abstract] [Full Text] [Related]

  • 17. Cytosolic adenylates and adenosine release in perfused working heart. Comparison of whole tissue with cytosolic non-aqueous fractionation analyses.
    Bünger R, Soboll S.
    Eur J Biochem; 1986 Aug 15; 159(1):203-13. PubMed ID: 3091368
    [Abstract] [Full Text] [Related]

  • 18. Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells.
    McClellan G, Weisberg A, Winegrad S.
    Am J Physiol; 1983 Nov 15; 245(5 Pt 1):C423-7. PubMed ID: 6638167
    [Abstract] [Full Text] [Related]

  • 19. Response of myocardial cellular energy metabolism to variation of buffer composition during open-chest experimental cardiopulmonary resuscitation in the pig.
    Wiklund L, Ronquist G, Roomans GM, Rubertsson S, Waldenström A.
    Eur J Clin Invest; 1997 May 15; 27(5):417-26. PubMed ID: 9179550
    [Abstract] [Full Text] [Related]

  • 20. Effects of hypoxia on high-energy phosphagen content, energy metabolism and isometric force in guinea-pig taenia caeci.
    Ishida Y, Paul RJ.
    J Physiol; 1990 May 15; 424():41-56. PubMed ID: 2391655
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.