These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


369 related items for PubMed ID: 28185552

  • 1. Protein complex prediction for large protein protein interaction networks with the Core&Peel method.
    Pellegrini M, Baglioni M, Geraci F.
    BMC Bioinformatics; 2016 Nov 08; 17(Suppl 12):372. PubMed ID: 28185552
    [Abstract] [Full Text] [Related]

  • 2. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks.
    Ou-Yang L, Yan H, Zhang XF.
    BMC Bioinformatics; 2017 Dec 01; 18(Suppl 13):463. PubMed ID: 29219066
    [Abstract] [Full Text] [Related]

  • 3. Protein complex prediction via dense subgraphs and false positive analysis.
    Hernandez C, Mella C, Navarro G, Olivera-Nappa A, Araya J.
    PLoS One; 2017 Dec 01; 12(9):e0183460. PubMed ID: 28937982
    [Abstract] [Full Text] [Related]

  • 4. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 01; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 5. An effective approach to detecting both small and large complexes from protein-protein interaction networks.
    Xu B, Wang Y, Wang Z, Zhou J, Zhou S, Guan J.
    BMC Bioinformatics; 2017 Oct 16; 18(Suppl 12):419. PubMed ID: 29072136
    [Abstract] [Full Text] [Related]

  • 6. Topological and functional comparison of community detection algorithms in biological networks.
    Rahiminejad S, Maurya MR, Subramaniam S.
    BMC Bioinformatics; 2019 Apr 27; 20(1):212. PubMed ID: 31029085
    [Abstract] [Full Text] [Related]

  • 7. MCL-CAw: a refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure.
    Srihari S, Ning K, Leong HW.
    BMC Bioinformatics; 2010 Oct 12; 11():504. PubMed ID: 20939868
    [Abstract] [Full Text] [Related]

  • 8. Protein Complexes Prediction Method Based on Core-Attachment Structure and Functional Annotations.
    Li B, Liao B.
    Int J Mol Sci; 2017 Sep 06; 18(9):. PubMed ID: 28878201
    [Abstract] [Full Text] [Related]

  • 9. Predicting overlapping protein complexes based on core-attachment and a local modularity structure.
    Wang R, Liu G, Wang C, Su L, Sun L.
    BMC Bioinformatics; 2018 Aug 22; 19(1):305. PubMed ID: 30134824
    [Abstract] [Full Text] [Related]

  • 10. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.
    He J, Li C, Ye B, Zhong W.
    BMC Bioinformatics; 2012 Jun 25; 13 Suppl 10(Suppl 10):S19. PubMed ID: 22759424
    [Abstract] [Full Text] [Related]

  • 11. A hybrid clustering algorithm for identifying modules in Protein-Protein Interaction networks.
    Yu L, Gao L, Sun PG.
    Int J Data Min Bioinform; 2010 Jun 25; 4(5):600-15. PubMed ID: 21133044
    [Abstract] [Full Text] [Related]

  • 12. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.
    Dimitrakopoulos C, Theofilatos K, Pegkas A, Likothanassis S, Mavroudi S.
    Artif Intell Med; 2016 Jul 25; 71():62-9. PubMed ID: 27506132
    [Abstract] [Full Text] [Related]

  • 13. Decision tree classifier based on topological characteristics of subgraph for the mining of protein complexes from large scale PPI networks.
    Sahoo TR, Patra S, Vipsita S.
    Comput Biol Chem; 2023 Oct 25; 106():107935. PubMed ID: 37536230
    [Abstract] [Full Text] [Related]

  • 14. Development and implementation of an algorithm for detection of protein complexes in large interaction networks.
    Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S.
    BMC Bioinformatics; 2006 Apr 14; 7():207. PubMed ID: 16613608
    [Abstract] [Full Text] [Related]

  • 15. Joint clustering of protein interaction networks through Markov random walk.
    Wang Y, Qian X.
    BMC Syst Biol; 2014 Apr 14; 8 Suppl 1(Suppl 1):S9. PubMed ID: 24565376
    [Abstract] [Full Text] [Related]

  • 16. Discovery of small protein complexes from PPI networks with size-specific supervised weighting.
    Yong CH, Maruyama O, Wong L.
    BMC Syst Biol; 2014 Apr 14; 8 Suppl 5(Suppl 5):S3. PubMed ID: 25559663
    [Abstract] [Full Text] [Related]

  • 17. Detecting Protein Complexes Based on Uncertain Graph Model.
    Zhao B, Wang J, Li M, Wu FX, Pan Y.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Apr 14; 11(3):486-97. PubMed ID: 26356017
    [Abstract] [Full Text] [Related]

  • 18. Detection of Complexes in Biological Networks Through Diversified Dense Subgraph Mining.
    Ma X, Zhou G, Shang J, Wang J, Peng J, Han J.
    J Comput Biol; 2017 Sep 14; 24(9):923-941. PubMed ID: 28570104
    [Abstract] [Full Text] [Related]

  • 19. Prediction of problematic complexes from PPI networks: sparse, embedded, and small complexes.
    Yong CH, Wong L.
    Biol Direct; 2015 Aug 01; 10():40. PubMed ID: 26231465
    [Abstract] [Full Text] [Related]

  • 20. A Seed Expansion Graph Clustering Method for Protein Complexes Detection in Protein Interaction Networks.
    Wang J, Zheng W, Qian Y, Liang J.
    Molecules; 2017 Dec 08; 22(12):. PubMed ID: 29292776
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.