These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 28186973

  • 1. Upregulation of FAM84B during prostate cancer progression.
    Wong N, Gu Y, Kapoor A, Lin X, Ojo D, Wei F, Yan J, de Melo J, Major P, Wood G, Aziz T, Cutz JC, Bonert M, Patterson AJ, Tang D.
    Oncotarget; 2017 Mar 21; 8(12):19218-19235. PubMed ID: 28186973
    [Abstract] [Full Text] [Related]

  • 2. Amplification of MUC1 in prostate cancer metastasis and CRPC development.
    Wong N, Major P, Kapoor A, Wei F, Yan J, Aziz T, Zheng M, Jayasekera D, Cutz JC, Chow MJ, Tang D.
    Oncotarget; 2016 Dec 13; 7(50):83115-83133. PubMed ID: 27825118
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression.
    Saraon P, Cretu D, Musrap N, Karagiannis GS, Batruch I, Drabovich AP, van der Kwast T, Mizokami A, Morrissey C, Jarvi K, Diamandis EP.
    Mol Cell Proteomics; 2013 Jun 13; 12(6):1589-601. PubMed ID: 23443136
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1.
    Hsu EC, Rice MA, Bermudez A, Marques FJG, Aslan M, Liu S, Ghoochani A, Zhang CA, Chen YS, Zlitni A, Kumar S, Nolley R, Habte F, Shen M, Koul K, Peehl DM, Zoubeidi A, Gambhir SS, Kunder CA, Pitteri SJ, Brooks JD, Stoyanova T.
    Proc Natl Acad Sci U S A; 2020 Jan 28; 117(4):2032-2042. PubMed ID: 31932422
    [Abstract] [Full Text] [Related]

  • 8. Aldehyde dehydrogenase 3A1 associates with prostate tumorigenesis.
    Yan J, De Melo J, Cutz JC, Aziz T, Tang D.
    Br J Cancer; 2014 May 13; 110(10):2593-603. PubMed ID: 24762960
    [Abstract] [Full Text] [Related]

  • 9. IQGAP2, A candidate tumour suppressor of prostate tumorigenesis.
    Xie Y, Yan J, Cutz JC, Rybak AP, He L, Wei F, Kapoor A, Schmidt VA, Tao L, Tang D.
    Biochim Biophys Acta; 2012 Jun 13; 1822(6):875-84. PubMed ID: 22406297
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition.
    Iannelli F, Roca MS, Lombardi R, Ciardiello C, Grumetti L, De Rienzo S, Moccia T, Vitagliano C, Sorice A, Costantini S, Milone MR, Pucci B, Leone A, Di Gennaro E, Mancini R, Ciliberto G, Bruzzese F, Budillon A.
    J Exp Clin Cancer Res; 2020 Oct 08; 39(1):213. PubMed ID: 33032653
    [Abstract] [Full Text] [Related]

  • 12. Direct interaction of β-catenin with nuclear ESM1 supports stemness of metastatic prostate cancer.
    Pan KF, Lee WJ, Chou CC, Yang YC, Chang YC, Chien MH, Hsiao M, Hua KT.
    EMBO J; 2021 Feb 15; 40(4):e105450. PubMed ID: 33347625
    [Abstract] [Full Text] [Related]

  • 13. Targeting GPR30 with G-1: a new therapeutic target for castration-resistant prostate cancer.
    Lam HM, Ouyang B, Chen J, Ying J, Wang J, Wu CL, Jia L, Medvedovic M, Vessella RL, Ho SM.
    Endocr Relat Cancer; 2014 Feb 15; 21(6):903-14. PubMed ID: 25287069
    [Abstract] [Full Text] [Related]

  • 14. Extrachromosomal circular DNA promotes prostate cancer progression through the FAM84B/CDKN1B/MYC/WWP1 axis.
    Jin W, Xu Z, Song Y, Chen F.
    Cell Mol Biol Lett; 2024 Jul 12; 29(1):103. PubMed ID: 38997648
    [Abstract] [Full Text] [Related]

  • 15. Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis.
    Hagberg Thulin M, Nilsson ME, Thulin P, Céraline J, Ohlsson C, Damber JE, Welén K.
    Mol Cell Endocrinol; 2016 Feb 15; 422():182-191. PubMed ID: 26586211
    [Abstract] [Full Text] [Related]

  • 16. IMP3 accelerates the progression of prostate cancer through inhibiting PTEN expression in a SMURF1-dependent way.
    Zhang X, Wang D, Liu B, Jin X, Wang X, Pan J, Tu W, Shao Y.
    J Exp Clin Cancer Res; 2020 Sep 16; 39(1):190. PubMed ID: 32938489
    [Abstract] [Full Text] [Related]

  • 17. m6 A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization.
    Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y, Peng X.
    Clin Transl Med; 2021 Jun 16; 11(6):e426. PubMed ID: 34185427
    [Abstract] [Full Text] [Related]

  • 18. Dependence of castration-resistant prostate cancer (CRPC) stem cells on CRPC-associated fibroblasts.
    Adisetiyo H, Liang M, Liao CP, Jeong JH, Cohen MB, Roy-Burman P, Frenkel B.
    J Cell Physiol; 2014 Sep 16; 229(9):1170-6. PubMed ID: 24752784
    [Abstract] [Full Text] [Related]

  • 19. FAM84B promotes prostate tumorigenesis through a network alteration.
    Jiang Y, Lin X, Kapoor A, He L, Wei F, Gu Y, Mei W, Zhao K, Yang H, Tang D.
    Ther Adv Med Oncol; 2019 Sep 16; 11():1758835919846372. PubMed ID: 31205500
    [Abstract] [Full Text] [Related]

  • 20. Combined targeting of EGFR and HER2 against prostate cancer stem cells.
    Rossini A, Giussani M, Ripamonti F, Aiello P, Regondi V, Balsari A, Triulzi T, Tagliabue E.
    Cancer Biol Ther; 2020 May 03; 21(5):463-475. PubMed ID: 32089070
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.