These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 2819236

  • 1. A dimerization model for the concentration dependent photophysical properties of diphenylhexatriene and its phospholipid derivatives. DPHpPC and DPHpPA.
    Lentz BR, Burgess SW.
    Biophys J; 1989 Oct; 56(4):723-33. PubMed ID: 2819236
    [Abstract] [Full Text] [Related]

  • 2. Advantages and limitations of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]-3- sn-phosphatidylcholine as a fluorescent membrane probe.
    Parente RA, Lentz BR.
    Biochemistry; 1985 Oct 22; 24(22):6178-85. PubMed ID: 4084512
    [Abstract] [Full Text] [Related]

  • 3. Phospholipid order in gel- and fluid-phase cell-size liposomes measured by digitized video fluorescence polarization microscopy.
    Florine-Casteel K.
    Biophys J; 1990 Jun 22; 57(6):1199-215. PubMed ID: 2393705
    [Abstract] [Full Text] [Related]

  • 4. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth.
    Kaiser RD, London E.
    Biochemistry; 1998 Jun 02; 37(22):8180-90. PubMed ID: 9609714
    [Abstract] [Full Text] [Related]

  • 5. Fusion and phase separation monitored by lifetime changes of a fluorescent phospholipid probe.
    Parente RA, Lentz BR.
    Biochemistry; 1986 Mar 11; 25(5):1021-6. PubMed ID: 3964657
    [Abstract] [Full Text] [Related]

  • 6. Membrane structural domains. Resolution limits using diphenylhexatriene fluorescence decay.
    Barrow DA, Lentz BR.
    Biophys J; 1985 Aug 11; 48(2):221-34. PubMed ID: 4052559
    [Abstract] [Full Text] [Related]

  • 7. A photophysical model for diphenylhexatriene fluorescence decay in solvents and in phospholipid vesicles.
    Parasassi T, De Stasio G, Rusch RM, Gratton E.
    Biophys J; 1991 Feb 11; 59(2):466-75. PubMed ID: 2009361
    [Abstract] [Full Text] [Related]

  • 8. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers.
    Bernsdorff C, Wolf A, Winter R, Gratton E.
    Biophys J; 1997 Mar 11; 72(3):1264-77. PubMed ID: 9138572
    [Abstract] [Full Text] [Related]

  • 9. Effect of n-alkanols on lipid bilayer hydration.
    Ho C, Stubbs CD.
    Biochemistry; 1997 Sep 02; 36(35):10630-7. PubMed ID: 9271493
    [Abstract] [Full Text] [Related]

  • 10. Order in phospholipid Langmuir-Blodgett monolayers determined by total internal reflection fluorescence.
    Zhai X, Kleijn JM.
    Biophys J; 1997 Jun 02; 72(6):2651-9. PubMed ID: 9168040
    [Abstract] [Full Text] [Related]

  • 11. Equilibrium and dynamic structure of large, unilamellar, unsaturated acyl chain phosphatidylcholine vesicles. Higher order analysis of 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]- 6-phenyl-1,3,5-hexatriene anisotropy decay.
    Straume M, Litman BJ.
    Biochemistry; 1987 Aug 11; 26(16):5113-20. PubMed ID: 3663647
    [Abstract] [Full Text] [Related]

  • 12. Phosphatidic acid affects structural organization of phosphatidylcholine liposomes. A study of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) fluorescence decay using distributional analysis.
    Zolese G, Gratton E, Curatola G.
    Chem Phys Lipids; 1990 Jul 11; 55(1):29-39. PubMed ID: 2208443
    [Abstract] [Full Text] [Related]

  • 13. Fluorescence dynamics of diphenyl-1,3,5-hexatriene-labeled phospholipids in bilayer membranes.
    Pap EH, ter Horst JJ, van Hoek A, Visser AJ.
    Biophys Chem; 1994 Jan 11; 48(3):337-51. PubMed ID: 8110960
    [Abstract] [Full Text] [Related]

  • 14. Effect of cholesterol on membrane microheterogeneity: a study using 1,6-diphenyl-1,3,5-hexatriene fluorescence lifetime distributions.
    Fiorini R, Gratton E, Curatola G.
    Biochim Biophys Acta; 1989 Nov 28; 1006(2):198-202. PubMed ID: 2597667
    [Abstract] [Full Text] [Related]

  • 15. Fluorescence lifetime distributions of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles.
    Fiorini R, Valentino M, Wang S, Glaser M, Gratton E.
    Biochemistry; 1987 Jun 30; 26(13):3864-70. PubMed ID: 3651418
    [Abstract] [Full Text] [Related]

  • 16. Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers.
    Mitchell DC, Litman BJ.
    Biophys J; 1998 Aug 30; 75(2):896-908. PubMed ID: 9675190
    [Abstract] [Full Text] [Related]

  • 17. 1-[4-(Trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers.
    Prendergast FG, Haugland RP, Callahan PJ.
    Biochemistry; 1981 Dec 22; 20(26):7333-8. PubMed ID: 7326228
    [Abstract] [Full Text] [Related]

  • 18. On the use of partition coefficients to characterize the distribution of fluorescent membrane probes between coexisting gel and fluid lipid phase: an analysis of the partition behavior of 1,6-diphenyl-1,3,5-hexatriene.
    Florine-Casteel K, Feigenson GW.
    Biochim Biophys Acta; 1988 Jun 07; 941(1):102-6. PubMed ID: 3370210
    [Abstract] [Full Text] [Related]

  • 19. Perturbation of egg phosphatidylcholine and dipalmitoylphosphatidylcholine multilamellar vesicles by n-alkanols. A fluorescent probe study.
    Zavoico GB, Chandler L, Kutchai H.
    Biochim Biophys Acta; 1985 Jan 25; 812(2):299-312. PubMed ID: 3838141
    [Abstract] [Full Text] [Related]

  • 20. Transverse location of the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer.
    Davenport L, Dale RE, Bisby RH, Cundall RB.
    Biochemistry; 1985 Jul 16; 24(15):4097-108. PubMed ID: 3931673
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.