These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 28194790

  • 1. Roasting conditions for preserving cocoa flavan-3-ol monomers and oligomers: interesting behaviour of Criollo clones.
    De Taeye C, Bodart M, Caullet G, Collin S.
    J Sci Food Agric; 2017 Sep; 97(12):4001-4008. PubMed ID: 28194790
    [Abstract] [Full Text] [Related]

  • 2. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients.
    Payne MJ, Hurst WJ, Miller KB, Rank C, Stuart DA.
    J Agric Food Chem; 2010 Oct 13; 58(19):10518-27. PubMed ID: 20843086
    [Abstract] [Full Text] [Related]

  • 3. Survey of commercially available chocolate- and cocoa-containing products in the United States. 2. Comparison of flavan-3-ol content with nonfat cocoa solids, total polyphenols, and percent cacao.
    Miller KB, Hurst WJ, Flannigan N, Ou B, Lee CY, Smith N, Stuart DA.
    J Agric Food Chem; 2009 Oct 14; 57(19):9169-80. PubMed ID: 19754118
    [Abstract] [Full Text] [Related]

  • 4. (-)-Catechin in cocoa and chocolate: occurrence and analysis of an atypical flavan-3-ol enantiomer.
    Kofink M, Papagiannopoulos M, Galensa R.
    Molecules; 2007 Jul 04; 12(7):1274-88. PubMed ID: 17909484
    [Abstract] [Full Text] [Related]

  • 5. Identification and quantification of free and bound phenolic compounds contained in the high-molecular weight melanoidin fractions derived from two different types of cocoa beans by UHPLC-DAD-ESI-HR-MSn.
    Oracz J, Nebesny E, Żyżelewicz D.
    Food Res Int; 2019 Jan 04; 115():135-149. PubMed ID: 30599925
    [Abstract] [Full Text] [Related]

  • 6. The Kinetics of Total Phenolic Content and Monomeric Flavan-3-ols during the Roasting Process of Criollo Cocoa.
    Fernández-Romero E, Chavez-Quintana SG, Siche R, Castro-Alayo EM, Cardenas-Toro FP.
    Antioxidants (Basel); 2020 Feb 09; 9(2):. PubMed ID: 32050504
    [Abstract] [Full Text] [Related]

  • 7. Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans.
    Stanley TH, Van Buiten CB, Baker SA, Elias RJ, Anantheswaran RC, Lambert JD.
    Food Chem; 2018 Jul 30; 255():414-420. PubMed ID: 29571495
    [Abstract] [Full Text] [Related]

  • 8. Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting.
    Kothe L, Zimmermann BF, Galensa R.
    Food Chem; 2013 Dec 15; 141(4):3656-63. PubMed ID: 23993533
    [Abstract] [Full Text] [Related]

  • 9. Degradation of (-)-epicatechin and procyanidin B2 in aqueous and lipidic model systems. first evidence of "chemical" flavan-3-ol oligomers in processed cocoa.
    De Taeye C, Cibaka ML, Jerkovic V, Collin S.
    J Agric Food Chem; 2014 Sep 10; 62(36):9002-16. PubMed ID: 25167469
    [Abstract] [Full Text] [Related]

  • 10. Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems.
    Oliviero T, Capuano E, Cämmerer B, Fogliano V.
    J Agric Food Chem; 2009 Jan 14; 57(1):147-52. PubMed ID: 19086900
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Procyanidin A2 and Its Degradation Products in Raw, Fermented, and Roasted Cocoa.
    De Taeye C, Caullet G, Eyamo Evina VJ, Collin S.
    J Agric Food Chem; 2017 Mar 01; 65(8):1715-1723. PubMed ID: 28207258
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Roasting-induced changes in cocoa beans with respect to the mood pyramid.
    Lemarcq V, Tuenter E, Bondarenko A, Van de Walle D, De Vuyst L, Pieters L, Sioriki E, Dewettinck K.
    Food Chem; 2020 Dec 01; 332():127467. PubMed ID: 32663755
    [Abstract] [Full Text] [Related]

  • 15. Characterization of new flavan-3-ol derivatives in fermented cocoa beans.
    Fayeulle N, Vallverdu-Queralt A, Meudec E, Hue C, Boulanger R, Cheynier V, Sommerer N.
    Food Chem; 2018 Sep 01; 259():207-212. PubMed ID: 29680045
    [Abstract] [Full Text] [Related]

  • 16. GC-MS detection of chiral markers in cocoa beans of different quality and geographic origin.
    Caligiani A, Cirlini M, Palla G, Ravaglia R, Arlorio M.
    Chirality; 2007 May 05; 19(4):329-34. PubMed ID: 17357118
    [Abstract] [Full Text] [Related]

  • 17. Near infra-red characterization of changes in flavan-3-ol derivatives in cocoa (Theobroma cacao L.) as a function of fermentation temperature.
    Hue C, Brat P, Gunata Z, Samaniego I, Servent A, Morel G, Kapitan A, Boulanger R, Davrieux F.
    J Agric Food Chem; 2014 Oct 15; 62(41):10136-42. PubMed ID: 25259956
    [Abstract] [Full Text] [Related]

  • 18. Changes in key aroma compounds of Criollo cocoa beans during roasting.
    Frauendorfer F, Schieberle P.
    J Agric Food Chem; 2008 Nov 12; 56(21):10244-51. PubMed ID: 18925740
    [Abstract] [Full Text] [Related]

  • 19. Stability of cocoa antioxidants and flavan-3-ols over time.
    Hurst WJ, Payne MJ, Miller KB, Stuart DA.
    J Agric Food Chem; 2009 Oct 28; 57(20):9547-50. PubMed ID: 20560624
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.