These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 28204578

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Mitochondrial citrate synthase plays important roles in anthocyanin synthesis in petunia.
    Zhao H, Chen G, Sang L, Deng Y, Gao L, Yu Y, Liu J.
    Plant Sci; 2021 Apr; 305():110835. PubMed ID: 33691969
    [Abstract] [Full Text] [Related]

  • 5. Functional identification of PhMATE1 in flower color formation in petunia.
    Yuan J, Qiu Z, Long Y, Liu Y, Huang J, Liu J, Yu Y.
    Physiol Plant; 2023 Apr; 175(3):e13949. PubMed ID: 37291826
    [Abstract] [Full Text] [Related]

  • 6. cDNA cloning and characterization of UDP-glucose: anthocyanidin 3-O-glucosyltransferase in Freesia hybrida.
    Sui X, Gao X, Ao M, Wang Q, Yang D, Wang M, Fu Y, Wang L.
    Plant Cell Rep; 2011 Jul; 30(7):1209-18. PubMed ID: 21318353
    [Abstract] [Full Text] [Related]

  • 7. Malonyl-CoA synthetase, encoded by ACYL ACTIVATING ENZYME13, is essential for growth and development of Arabidopsis.
    Chen H, Kim HU, Weng H, Browse J.
    Plant Cell; 2011 Jun; 23(6):2247-62. PubMed ID: 21642549
    [Abstract] [Full Text] [Related]

  • 8. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower Tepals, tepal spots and leaves of asiatic hybrid lily.
    Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K.
    Plant Cell Physiol; 2010 Mar; 51(3):463-74. PubMed ID: 20118109
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia.
    Boase MR, Brendolise C, Wang L, Ngo H, Espley RV, Hellens RP, Schwinn KE, Davies KM, Albert NW.
    Plant Cell Rep; 2015 Oct; 34(10):1817-23. PubMed ID: 26113165
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Phosphorus starvation induces post-transcriptional CHS gene silencing in Petunia corolla.
    Hosokawa M, Yamauchi T, Takahama M, Goto M, Mikano S, Yamaguchi Y, Tanaka Y, Ohno S, Koeda S, Doi M, Yazawa S.
    Plant Cell Rep; 2013 May; 32(5):601-9. PubMed ID: 23397276
    [Abstract] [Full Text] [Related]

  • 13. Shikimate Kinase Plays Important Roles in Anthocyanin Synthesis in Petunia.
    Yuan J, Zhong S, Long Y, Guo J, Yu Y, Liu J.
    Int J Mol Sci; 2022 Dec 15; 23(24):. PubMed ID: 36555606
    [Abstract] [Full Text] [Related]

  • 14. PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway.
    Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R.
    Plant Cell; 2006 May 15; 18(5):1274-91. PubMed ID: 16603655
    [Abstract] [Full Text] [Related]

  • 15. PhERF6, interacting with EOBI, negatively regulates fragrance biosynthesis in petunia flowers.
    Liu F, Xiao Z, Yang L, Chen Q, Shao L, Liu J, Yu Y.
    New Phytol; 2017 Sep 15; 215(4):1490-1502. PubMed ID: 28675474
    [Abstract] [Full Text] [Related]

  • 16. Identification and characterization of R2R3-MYB and bHLH transcription factors regulating anthocyanin biosynthesis in gentian flowers.
    Nakatsuka T, Haruta KS, Pitaksutheepong C, Abe Y, Kakizaki Y, Yamamoto K, Shimada N, Yamamura S, Nishihara M.
    Plant Cell Physiol; 2008 Dec 15; 49(12):1818-29. PubMed ID: 18974195
    [Abstract] [Full Text] [Related]

  • 17. Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida.
    Morita Y, Saito R, Ban Y, Tanikawa N, Kuchitsu K, Ando T, Yoshikawa M, Habu Y, Ozeki Y, Nakayama M.
    Plant J; 2012 Jun 15; 70(5):739-49. PubMed ID: 22288551
    [Abstract] [Full Text] [Related]

  • 18. A peroxisomal thioesterase plays auxiliary roles in plant β-oxidative benzoic acid metabolism.
    Adebesin F, Widhalm JR, Lynch JH, McCoy RM, Dudareva N.
    Plant J; 2018 Mar 15; 93(5):905-916. PubMed ID: 29315918
    [Abstract] [Full Text] [Related]

  • 19. Physiological changes besides the enhancement of pigmentation in Petunia hybrida caused by overexpression of PhAN2, an R2R3-MYB transcription factor.
    Li G, Serek M, Gehl C.
    Plant Cell Rep; 2023 Mar 15; 42(3):609-627. PubMed ID: 36690873
    [Abstract] [Full Text] [Related]

  • 20. Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian.
    Fukuchi-Mizutani M, Okuhara H, Fukui Y, Nakao M, Katsumoto Y, Yonekura-Sakakibara K, Kusumi T, Hase T, Tanaka Y.
    Plant Physiol; 2003 Jul 15; 132(3):1652-63. PubMed ID: 12857844
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.