These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Chronic stimulation of ocular sympathetic fibers in unanesthetized rabbits. Belmonte C, Perez E, Lopez-Briones LG, Gallar J. Invest Ophthalmol Vis Sci; 1987 Jan; 28(1):194-7. PubMed ID: 3804652 [Abstract] [Full Text] [Related]
5. Modulation of ocular hydrodynamics and iris function by bremazocine, a kappa opioid receptor agonist. Russell KR, Wang DR, Potter DE. Exp Eye Res; 2000 May; 70(5):675-82. PubMed ID: 10870526 [Abstract] [Full Text] [Related]
6. Central cholinergic stimulation affects ocular functions through sympathetic pathways. Liu JH, Dacus AC. Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1332-8. PubMed ID: 1973158 [Abstract] [Full Text] [Related]
7. Naphazoline-induced suppression of aqueous humor pressure and flow: involvement of central and peripheral alpha(2)/I(1) receptors. Ogidigben MJ, Chu TC, Potter DE. Exp Eye Res; 2001 Mar; 72(3):331-9. PubMed ID: 11180982 [Abstract] [Full Text] [Related]
8. Effects of cholinergic drugs and adrenergic drugs on aqueous humor formation in the rabbit eye. Miichi H, Nagataki S. Jpn J Ophthalmol; 1982 Mar; 26(4):425-36. PubMed ID: 7166902 [Abstract] [Full Text] [Related]
10. Ocular adrenergic nerves contribute to control of the circadian rhythm of aqueous flow in rabbits. Yoshitomi T, Gregory DS. Invest Ophthalmol Vis Sci; 1991 Mar; 32(3):523-8. PubMed ID: 1848209 [Abstract] [Full Text] [Related]
11. Endogenous hormonal changes and circadian elevation of intraocular pressure. Liu JH, Dacus AC. Invest Ophthalmol Vis Sci; 1991 Mar; 32(3):496-500. PubMed ID: 2001924 [Abstract] [Full Text] [Related]
13. Thyrotropin releasing hormone increases intraocular pressure. Mechanism of action. Liu JH, Dacus AC, Bartels SP. Invest Ophthalmol Vis Sci; 1989 Oct; 30(10):2200-8. PubMed ID: 2507469 [Abstract] [Full Text] [Related]
14. Physiological factors in the circadian rhythm of protein concentration in aqueous humor. Liu JH, Lindsey JD, Weinreb RN. Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):553-8. PubMed ID: 9501866 [Abstract] [Full Text] [Related]
15. A comparison between the effect of topical and systemic carbonic anhydrase inhibitors on aqueous humor secretion. Brechue WF, Maren TH. Exp Eye Res; 1993 Jul; 57(1):67-78. PubMed ID: 8405174 [Abstract] [Full Text] [Related]
16. Do alpha-adrenergic receptors participate in control of the circadian rhythm of IOP? Kiuchi Y, Yoshitomi T, Gregory DS. Invest Ophthalmol Vis Sci; 1992 Oct; 33(11):3186-94. PubMed ID: 1356946 [Abstract] [Full Text] [Related]
17. Adrenergic decentralization modifies the circadian rhythm of intraocular pressure. Braslow RA, Gregory DS. Invest Ophthalmol Vis Sci; 1987 Oct; 28(10):1730-2. PubMed ID: 3654147 [Abstract] [Full Text] [Related]
18. Effect of flunarizine, a calcium channel blocker, on intraocular pressure and aqueous humor dynamics in monkeys. Wang RF, Gagliuso DJ, Podos SM. J Glaucoma; 2008 Oct; 17(1):73-8. PubMed ID: 18303390 [Abstract] [Full Text] [Related]
19. The effect of topical timolol on epinephrine-stimulated aqueous humor flow in sleeping humans. Rettig ES, Larsson LI, Brubaker RF. Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):554-9. PubMed ID: 8113006 [Abstract] [Full Text] [Related]
20. Timolol reduces IOP in normal NZW rabbits during the dark only. Gregory DS. Invest Ophthalmol Vis Sci; 1990 Apr; 31(4):715-21. PubMed ID: 2335438 [Abstract] [Full Text] [Related] Page: [Next] [New Search]