These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
236 related items for PubMed ID: 28212609
1. Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. Kan CC, Chung TY, Wu HY, Juo YA, Hsieh MH. BMC Genomics; 2017 Feb 17; 18(1):186. PubMed ID: 28212609 [Abstract] [Full Text] [Related]
2. Glutamine rapidly induces the expression of key transcription factor genes involved in nitrogen and stress responses in rice roots. Kan CC, Chung TY, Juo YA, Hsieh MH. BMC Genomics; 2015 Sep 25; 16(1):731. PubMed ID: 26407850 [Abstract] [Full Text] [Related]
3. Identification of early ammonium nitrate-responsive genes in rice roots. Yang HC, Kan CC, Hung TH, Hsieh PH, Wang SY, Hsieh WY, Hsieh MH. Sci Rep; 2017 Dec 04; 7(1):16885. PubMed ID: 29203827 [Abstract] [Full Text] [Related]
4. Ammonium uptake and metabolism alleviate PEG-induced water stress in rice seedlings. Cao X, Zhong C, Zhu C, Zhu L, Zhang J, Wu L, Jin Q. Plant Physiol Biochem; 2018 Nov 04; 132():128-137. PubMed ID: 30189416 [Abstract] [Full Text] [Related]
5. Early molecular events associated with nitrogen deficiency in rice seedling roots. Hsieh PH, Kan CC, Wu HY, Yang HC, Hsieh MH. Sci Rep; 2018 Aug 15; 8(1):12207. PubMed ID: 30111825 [Abstract] [Full Text] [Related]
6. Genome-wide transcriptome analysis of expression in rice seedling roots in response to supplemental nitrogen. Chandran AK, Priatama RA, Kumar V, Xuan Y, Je BI, Kim CM, Jung KH, Han CD. J Plant Physiol; 2016 Aug 01; 200():62-75. PubMed ID: 27340859 [Abstract] [Full Text] [Related]
7. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses. Moons A. Planta; 2008 Dec 01; 229(1):53-71. PubMed ID: 18830621 [Abstract] [Full Text] [Related]
8. New Insights into the Transcriptional Regulation of Genes Involved in the Nitrogen Use Efficiency under Potassium Chlorate in Rice (Oryza sativa L.). Kabange NR, Park SY, Lee JY, Shin D, Lee SM, Kwon Y, Cha JK, Cho JH, Duyen DV, Ko JM, Lee JH. Int J Mol Sci; 2021 Feb 22; 22(4):. PubMed ID: 33671842 [Abstract] [Full Text] [Related]
9. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice. Yang C, Ma B, He SJ, Xiong Q, Duan KX, Yin CC, Chen H, Lu X, Chen SY, Zhang JS. Plant Physiol; 2015 Sep 22; 169(1):148-65. PubMed ID: 25995326 [Abstract] [Full Text] [Related]
11. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Ohashi M, Ishiyama K, Kojima S, Konishi N, Nakano K, Kanno K, Hayakawa T, Yamaya T. Plant Cell Physiol; 2015 Apr 22; 56(4):769-78. PubMed ID: 25634963 [Abstract] [Full Text] [Related]
12. Metabolic and co-expression network-based analyses associated with nitrate response in rice. Coneva V, Simopoulos C, Casaretto JA, El-Kereamy A, Guevara DR, Cohn J, Zhu T, Guo L, Alexander DC, Bi YM, McNicholas PD, Rothstein SJ. BMC Genomics; 2014 Dec 03; 15(1):1056. PubMed ID: 25471115 [Abstract] [Full Text] [Related]
13. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. Tan M, Cheng D, Yang Y, Zhang G, Qin M, Chen J, Chen Y, Jiang M. BMC Plant Biol; 2017 Nov 07; 17(1):194. PubMed ID: 29115926 [Abstract] [Full Text] [Related]
14. Indeterminate domain 10 regulates ammonium-mediated gene expression in rice roots. Xuan YH, Priatama RA, Huang J, Je BI, Liu JM, Park SJ, Piao HL, Son DY, Lee JJ, Park SH, Jung KH, Kim TH, Han CD. New Phytol; 2013 Feb 07; 197(3):791-804. PubMed ID: 23278238 [Abstract] [Full Text] [Related]
15. Comparative Transcriptome Analysis of Shoots and Roots of TNG67 and TCN1 Rice Seedlings under Cold Stress and Following Subsequent Recovery: Insights into Metabolic Pathways, Phytohormones, and Transcription Factors. Yang YW, Chen HC, Jen WF, Liu LY, Chang MC. PLoS One; 2015 Feb 07; 10(7):e0131391. PubMed ID: 26133169 [Abstract] [Full Text] [Related]
16. γ-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings. Ma X, Zhu C, Yang N, Gan L, Xia K. Physiol Plant; 2016 Dec 07; 158(4):389-401. PubMed ID: 27218863 [Abstract] [Full Text] [Related]
17. Analysis of Growth and Molecular Responses to Ethylene in Etiolated Rice Seedlings. Ma B, Zhang JS. Methods Mol Biol; 2017 Dec 07; 1573():237-243. PubMed ID: 28293850 [Abstract] [Full Text] [Related]
18. Identification of microRNAs in rice root in response to nitrate and ammonium. Li H, Hu B, Wang W, Zhang Z, Liang Y, Gao X, Li P, Liu Y, Zhang L, Chu C. J Genet Genomics; 2016 Nov 20; 43(11):651-661. PubMed ID: 27372185 [Abstract] [Full Text] [Related]
19. Identification of genes enriched in rice roots of the local nitrate treatment and their expression patterns in split-root treatment. Wang X, Wu P, Xia M, Wu Z, Chen Q, Liu F. Gene; 2002 Sep 04; 297(1-2):93-102. PubMed ID: 12384290 [Abstract] [Full Text] [Related]
20. Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance. Tyagi W, Rai M. Protoplasma; 2017 Mar 04; 254(2):725-736. PubMed ID: 27228993 [Abstract] [Full Text] [Related] Page: [Next] [New Search]